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I. Introduction. 

Over the last two years, there has been an explosion of academic literature on the economic 

impact of Generative AI (GenAI). In this paper, we take stock of part of this literature by doing 

a meta-analysis of the results of 45 papers that focus on the impact of Gen AI on productivity. 

We focus on productivity in a work environment by selecting papers that investigate how the 

introduction of GenAI affects the quantity and quality of work done, when GenAI is applied to 

real-life tasks rather than academic tasks or assignments, and typically (but not always) by 

employees rather than by students. 

A meta-analysis of these studies allow us to identify the range of estimates available in the 

literature, judge the external validity of individual studies, as well as to compute a meta-

analytic average of these estimates, reflecting the ‘best’ estimate based on the literature as a 

whole. Having such numbers is important when estimating or developing scenarios for the 

macro-economic impact of GenAI. When analyzing the impact of GenAI on economic growth, 

Briggs and Kodnani (2023) use estimates from academic studies of the impact on productivity 

of non-generative AI. Similarly, Acemoglu (2024) multiplies the average of the estimates from 

only 2 studies (0.27, estimates from Noy and Zhang (2023) and Brynjolfsson, Li, and Raymond 

(2024)) with the share of jobs exposed to GenAI (0.57) to estimate that “the average (overall) 

cost savings from AI are about 0.27 × 0.57 = 0.154”. 

Based on more than 1000 estimates from 45, rather than 2, studies, and after controlling for 

potential publication bias, our preferred specification suggests that using GenAI to perform a 

work task on average increases productivity on that task by about 17%.1 We further show 

substantial heterogeneity in reported estimates suggesting context matters a lot, with weak 

evidence suggesting quantitative measures of productivity (like time spent producing an item 

or number of items produced in a given amount of time) experiencing a bigger impact, 

measured in percentage change, than qualitative measures of productivity (like quality of work 

produced). There is also some evidence that experimental studies show higher partial 

correlations between GenAI use and productivity than quasi-experimental studies. 

 

1 It is important to note that this does not imply we should expect labor demand to decrease by 17% as jobs consist 
out of many tasks and not all tasks within a job can be made more productive by GenAI. In addition, our outcome 
measures include quality measures and improvement in the quality of a task done do not necessarily imply a 
reduced need to do that task. 
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Section II explains how we selected studies and section III discusses the characteristics of these 

studies. We then discuss different ways to aggregate the estimates (section IV), how we correct 

for publication bias (sections V and VI) and analyze how study characteristics affect estimates 

(section VII). Section VIII to XII repeat these steps for a different outcome measure, the partial 

correlation (Fisher Z score) between GenAI use and productivity, rather than the estimated 

percentage change in productivity associated with GenAI use. The final section concludes. 

II. Finding studies that estimate the impact of GenAI on Productivity. 

To find relevant studies, we conducted a systematic search of literature on Gen AI and 

productivity using Scopus and Google Scholar. 

We started from the primary keywords “Gen AI” and “productivity”, restricting the search to 

titles, abstracts, and keywords to ensure greater accuracy in both the initial and subsequent 

expanded searches.2 

We selected Scopus as the initial database as the keyword analysis tool embedded in Scopus 

can automatically extract keywords from retrieved studies, enabling one to efficiently identify 

additional relevant keywords. We iteratively expanded the initial search query and continued 

searching until no new relevant keywords emerged. This led to an expanded search query –

“TITLE-ABS-KEY (”Gen* AI” OR “generative artificial intelligence” OR “large language 

model” OR “LLM” OR ChatGPT OR Copilot) AND TITLE-ABS-KEY (productivity OR 

performance OR quality OR quantity)”. 

We restricted the search to English-language literature and limited the publication years to 

2023 and later, considering the widespread adoption of ChatGPT since 2023. As a result, we 

retrieved 687 studies on Scopus. 

We then conducted a Google Scholar search using the expanded query and retrieved the first 

500 results sorted by relevance. We combined all retrieved studies and manually reviewed the 

titles and abstracts and skimmed the content of the retrieved studies. To be eligible, studies had 

to use empirical data to demonstrate the actual impact of the use of GenAI by humans on 

productivity outcomes in workplace settings. We excluded studies that focused, for example, 

on GenAI’s effect on perceived productivity of workers or course outcomes of students. We 

 

2 The Boolean search query used in Scopus was “TITLE-ABS-KEY (”Gen* AI”) AND TITLE-ABS-KEY 
(productivity)”, where the asterisk functions as a wildcard to capture variations such as “gen” and “generative”, 
or other synonyms beginning with “gen”. 
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also excluded studies that compare the performance of humans to the performance of GenAI 

tools without (substantial) human help (for example Csaszar, Ketkar, and Kim (2024) or 

Humlum and Vestergaard (2025)). As a result, searching with keywords helped us find 30 

relevant studies. 

Finally, we checked the references of the selected studies to track additional eligible studies 

and continued to track social media for new studies. This helped us identify 15 additional 

studies. In total, we retained 45 eligible studies. 

III. Descriptive Statistics 

As a starting point, we classified, based on the abstract, each study as finding either a positive 

effect, a mixed effect or finding no effect. Based on the abstract, 31 studies suggest GenAI 

improves productivity, 12 find mixed effects, with GenAI increasing productivity for some 

tasks or skill-levels but decreasing for others, while two studies found no significant effect 

(Butler et al. (2024), Goh et al. (2024)). Twenty studies include a measure of the percent change 

in productivity in their abstract, showing an average productivity improvement of about 33%. 

Twenty-six papers included results about who benefited most from GenAI tools. 16 papers 

concluded that GenAI tools benefit those with lower skills/experience the most, 6 found that 

who benefited most depended on the specific outcome measure, while 4 found GenAI benefited 

high performers most or all skill-levels as much. 

It is further worth mentioning that 13 studies mentioned they used GenAi tools for their study. 

Besides for copy-editing, GenAI has been used for graphs (Dell’Acqua et al. (2024), Wiles et 

al. (2024) ), to classify observations into categories (Wiles et al. (2024), Brynjolfsson, Li, and 

Raymond (2024), Yeverechyahu, Mayya, and Oestreicher-Singer (2024)) or grade content or 

performance (Wiles et al. (2024), Freeman et al. (2024), Haslberger, Gingrich, and Bhatia 

(2024)). We have used, with mixed success, ChatGPT to extract estimates from tables, search 

for and understand information about meta-analytic techniques and standard errors, and to 

improve the R code. 

Figure I and Table I further highlights the diversity across the (41) studies for which we have 

estimates in terms of percentage changes. 
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For each of the identified studies, we coded, besides estimates and standard errors3, the 

following study-level characteristics. 

• Is the study experimental or not? 33 studies randomly provided access to a GenAI tool 

to some subjects (for example, K. Peng et al. (2023) or Choi, Monahan, and Schwarcz 

(2023)) but others (8 studies) used quasi-experiments like the introduction of ChatGPT 

in only some countries (Quispe and Grijalba (2024)), the ban on ChatGPT in Italy 

(Kreitmeir and Raschky (2024)), CoPilot only affecting software start-ups but not non-

software related start-ups (Asam and Heller (2024)), CoPilot being introduced early to 

some programmers (Hoffmann et al. (2024)) or the availability of CoPilot for Python 

but not for R (Yeverechyahu, Mayya, and Oestreicher-Singer (2024)). 

• What is the main sector in which the work takes place? The most frequent (13 studies) 

task was coding (software industry), but other tasks included designing advertisements 

 

3 Extracting estimates from papers is not always straightforward as some papers provide figures rather than tables. 
In general, we do not code data from figures except if no other estimates are available for that study and the figures 
are sufficiently detailed to get reasonable guesses of the values. We have an excel spreadsheet that explains for 
each paper what we included and did not include. 
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(Fu et al. (2024)), product innovation (Dell’Acqua et al. (2025)), blogging (Kaisen, Li, 

and Lu (2024)), office tasks (Freeman et al. (2024)), customer support (Ni et al. (2024)), 

writing short stories (Doshi and Hauser (2024)), tutoring (R. E. Wang et al. (2025)) and 

running a start-up (Otis et al. (2024)). 

• For what specific GenAI tool is the impact on productivity analysed? Most studies 

looked at the impact of ChatGPT (23, for example, Quispe and Grijalba (2024) or 

Freeman et al. (2024)), or CoPilot (for example, Hoffmann et al. (2024) or Butler et al. 

(2024)), while few looked at company-specific GenAI tools (for example, Ni et al. 

(2024)). 

Note there are many other dimensions in which these estimates differ. For example, some 

papers use control variables in a regression analysis, while other do not. Or some estimates 

were obtained using clustered standard errors, while others not. Or the incentives provided to 

participants in some experiments were higher than in other experiments. Given we have a a 

relatively small number of papers and hence, our ability to figure out what characteristics really 

cause estimates to be different is limited, we will focus here on a small number of study 

characteristics, which we think are likely to be important. This means one should be cautious 

when interpreting differences in estimate sizes across estimate or paper characteristics. 

Besides characteristics of the studies, we looked at one characteristic of the outcome variable, 

subdividing estimates into impacts on quantitative outcomes (35 studies) like speed or number 

of items produced (for example, Gambacorta et al. (2024) counts the number of lines of code 

produced over a period of 6 weeks, or Asam and Heller (2024) uses time-to-initial funding for 

start-ups) and impacts on qualitative measures (25 studies, for example, Doshi and Hauser 

(2024) measures the creativity of stories produced with or without the help of GenAI, or Fu et 

al. (2024) measures the ‘usefulness’ of designs). 

The fact that different studies use different outcome measures makes it hard to compare 

estimates across studies. For example, how can one compare a study that finds GenAI increases 

the output by 5 lines of code per hour to a study that fins GenAI increases the creativity score 

by 1 on a scale from 0 to 10? 

To have a measure of the impact on productivity that is comparable across studies, we 

transformed, where possible, estimates to percentage changes, relative to the base category of 
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productivity when no GenAI tool was available. Unfortunately, 4 out of 45 studies do not 

provide enough information to compute this measure.4 

We therefore also use a more standard approach in the meta-analysis literature by focusing on 

the partial correlation between the outcome and the treatment, through Fisher Z scores, which 

are derived from estimated t-statistics. So we will present two sets of estimates, the first one 

being the more intuitive measure (percent changes, table I), the second (Fisher Z scores, table 

VII below) being available for more estimates. 

Table I shows we have a total of 1161 estimates from 41 studies, with a median estimate of 

14.7% and a mean of 26.2%. Note further that 83.3% of the estimates is positive. 

Aggregating estimates first by studies (so studies with more estimates do not get more weight) 

and then across studies (the ‘overall, by study’ statistic) shows similar results. It’s also worth 

noting that standard deviation and the range of estimates is very big, reflecting the 

heterogeneity in outcomes across studies. 

Table I further suggests that studies set in the software industry, studies not focusing on 

ChatGPT, or studies using quantitative (rather than qualitative) outcomes find higher 

productivity. Of course, as mentioned above, one should be careful interpreting these 

differences as causal given the correlation between these and other, omitted, characteristics. 

IV. Weighing Estimates to Get an Overall Estimate. 

So far we focused on the heterogeneity in the estimates. But how can we now best aggregate 

these results to get one number that summarizes the findings of the literature? There are 

multiple ways one can aggregate estimates across studies. Table I provided statistics that 

weighed all estimates equally (the ‘overall’ statistics) or weighed estimates so all studies had 

the same weight, independent of how many estimates came from a given study (the ‘overall, 

by study’ statistics). However, one could argue that a more efficient estimate can be obtained 

if more precisely estimated estimates would be given a higher weight. In the meta-analysis 

literature, several ways to weigh estimates have been proposed. In table II below, we provide, 

 

4 To compute the standard error of the percentage change, we multiply the percentage change by the ratio of the 
estimated standard error and the estimated effect size. This somewhat underestimates the true standard error 
(which would take into account the standard error of the base category mean). However, most studies don’t report 
that standard error, and studies that do refer to percentage changes, typically implicitly assume that there is no 
such variation when discussing results. Our approach is thus consistent with what the typical study reports. 
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in addition to the OLS estimate (which corresponds to the mean estimate of Table I), a fixed 

effect estimate, a random effect estimate and two 3-level model estimates. 

The OLS model assumes that the estimate i (out of N) comes from a distribution with mean 𝛽𝛽0 

and variance 𝜎𝜎2. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝜖𝜖𝑖𝑖, 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎2), 𝑖𝑖 = 1, … ,𝑁𝑁 

All estimates are thus assumed to come from the same distribution, and the only reason why 

estimates differ is because of sampling error. 

The fixed effects model maintains the assumption of one single true effect but relaxes the 

assumption of homoscedasticity and gives higher weight to more precise estimates (that is, 

weighted least squares). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝜖𝜖𝑖𝑖, 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0, 𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖)2), 𝑖𝑖 = 1, … ,𝑁𝑁 

The random effects model allows for an additional normally distributed random effect with 

mean 𝜃𝜃𝑖𝑖 and variance 𝜏𝜏2. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖 = 𝛽𝛽0 + 𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖, 𝜃𝜃𝑖𝑖 ∼ 𝑁𝑁(0, 𝜏𝜏2), 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0, 𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖)2), 𝑖𝑖 = 1, … ,𝑁𝑁 

In other words, there is unique true effect for each estimate which consists of the common 

effect 𝛽𝛽0 and a draw from a common normal distribution. 

The three level, hierarchical effects meta-analysis, further modifies this equation to recognize 

that estimates from the same study are likely to have a common effect. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜙𝜙𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑗𝑗 ∼ 𝑁𝑁(0, 𝜏𝜏2), 𝜙𝜙𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0, 𝜐𝜐2), 𝜖𝜖𝑖𝑖𝑖𝑖

∼ 𝑁𝑁 �0, 𝑠𝑠𝑠𝑠�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖�
2
� , 𝑖𝑖 = 1, … , 𝑆𝑆, 𝑗𝑗 = 1, … ,𝐺𝐺 

So in addition to the common effect 𝛽𝛽0 and the random estimate level effect 𝜃𝜃𝑖𝑖, there is also a 

study level effect, 𝜙𝜙𝑖𝑖𝑖𝑖 . 

Finally, he 3L-VCV model, also known as the correlated and hierarchical effects meta-analysis 

model further allows sampling errors to be correlated at the study level. The later correlation 

is not estimated, however, instead it needs to be imposed. We chose a value of 0.2 as this 

typically minimized the Akaike Information Criterion (AIC) and hence fitted the data well. 
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Table II - Averaging Estimates using Various Weights 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

overall 0.262 0.015 0.189 0.204 0.167 

 (0.073***) (0.001***) (0.033***) (0.035***) (0.029***) 

Num.Obs. 1161 1161 1161 1161 1161 

AIC 2268.4 41597.7 506.7 117.1 33.4 

Notes: The estimated 'overall' effect is the result of a regression of the estimate of the impact of 
GenAI on productivity, measured as percentage changes in productivity, on a constant. The different 
models make different assumptions about the error terms as described in the text. 

 

Table II shows that if we assume all estimates come from the same distribution (fixed effects), 

the best estimate is an extremely small impact. Given the diversity of the papers in the sample, 

the fixed effect assumption is further unlikely to hold and the random effects estimator makes 

more sense.5 The random effect is closer to the OLS estimate and suggests a 18.9% 

improvement in productivity associated with GenAI. The random effects estimator assumes all 

estimates are independent, but since many estimates come from the same study, the 3 level 

estimators, which allow for correlations between groups of estimates, are more realistic. Based 

on the minimum AIC criterion, our preferred estimate of the overall average comes from the 

3-level VCV model which shows using GenAI when performing a task is associated with an 

increase in productivity on that task of 16.7%.6 

V. Correcting for Publication Bias 

So far, we assumed that there was no publication bias: that is, researchers are as likely to 

publish significant and insignificant results. However, in reality researchers might be less likely 

to show insignificant results as they know there is a disproportionate interest for significant 

results. 

 

5 the I2 statistic equals 99.9 which measures the importance of the random effects suggest almost all of the variance 
comes from the variance of the random effect (𝜏𝜏2) rather than sampling variance. 
6 If we winsorize the estimates at the 1 and 99% percentile, we get very similar results. 
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The standard way to check for publication bias is the funnel plot. In the absence of publication 

bias, there should not be a relationship between the estimate and its standard error. The funnel 

plot in figure II plots the preciseness of the estimate against the estimated effect size. 

 

If there is no publication bias one should see most estimates in the funnel. In our case, we see 

more estimates at the right side of the funnel than at the left-side, suggesting there could be 

publication bias. 

 

 

 

 

 



11 
 

Classification: In-Confidence 

 

 

Table III  - Publication Bias - FAT-PET 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.093 0.014 0.073 0.082 0.074 

 (0.108) (0.001***) (0.038+) (0.037*) (0.028*) 

St. Error 1.458 2.810 1.604 1.451 1.512 

 (1.208) (0.538***) (0.493*) (0.397**) (0.271***) 

Num.Obs. 1161 1161 1161 1161 1161 

AIC 1844.4 32583.7 251.9 -64.4 -71.2 

Notes: The table shows the result of a regression of the estimate of the impact of GenAI on 
productivity, measured as percentage changes in productivity, on a constant and the standard 
error of the estimate, to control for publication bias. The different models make different 
assumptions about the error terms as described in the text. 

 

To incorporate publication bias in the weighting models described above, we include the 

standard error of estimates in the regression models (the so-called FAT-PET-test). This variable 

will allow to control for the possible link between the standard error and the estimated effect 

size. In this regression, the intercept then becomes the estimated effect size in case of zero 

publication bias. 

Table III shows some mixed results in terms of publication bias: while all coefficients are 

positive, suggesting more precise estimates (which have smaller standard errors) tend to show 

smaller effect sizes, the estimates are not always statistically significant. Once we control for 

the potential bias, the estimate of the overall effect become smaller, from 16.7% for the 3 level 

VCV estimate which assumes no publication bias, to 7.4% once publication bias is taken into 

account. 

VI. PEESE Analysis 

The traditional next step after finding that the overall effect is different from zero, is to do a 

regression including the square of the standard error as a control rather than the standard error 
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itself, the idea being that theoretically publication bias should be non-linearly related to the 

estimated effect size. This is the so-called PEESE test. 

Table IV - Publication Bias - PEESE 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.250 0.015 0.177 0.189 0.167 

 (0.067***) (0.001***) (0.032***) (0.031***) (0.028***) 

St. Error^2 0.164 3.390 1.168 0.953 0.611 

 (0.470) (2.160) (1.044) (0.836) (0.701) 

Num.Obs. 1161 1161 1161 1161 1161 

AIC 2181.6 40628.3 405.9 51.1 10.1 

Notes: The table shows the result of a regression of the estimate of the impact of GenAI on 
productivity, measured as percentage changes in productivity, on a constant and the square of the 
standard error of the estimate, to control for publication bias. The different models make different 
assumptions about the error terms as described in the text. 

 

Interestingly, the PEESE results in table IV suggest there is no significant non-linear 

publication bias, and hence bring our preferred 3-level VCV estimates back up to a 16.7% 

increase in productivity.7 

 

 

 

 

 

 

 

 

7 There are other ways to correct for publication bias. However, these other methods do not allow for a 3-level 
structure. The 3-level structure however seems most appropriate in our set-up (multiple estimates per study) and 
in our analysis, 3-level models typically get the best AIC score. 
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VII. Heterogeneity Analysis 

To further try to explain why estimates are different we next include 4 dummies, 3 reflecting 

differences between studies, whether the study was experimental or not, whether the study was 

focusing on the Software Industry or not and whether ChatGPT was the GenAI tool or not, and 

one regression-level variable, whether the outcome was a measure of quantity or not.8 

Table V - Heterogeneity Analysis 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.208 0.125 0.147 0.139 0.109 

 (0.187) (0.069) (0.112) (0.117) (0.105) 

St. Error^2 0.167 3.077 1.116 0.944 0.609 

 (0.451) (1.993) (0.964) (0.826) (0.703) 

Quantity 0.241 -0.035 0.142 0.151 0.145 

 (0.156) (0.038) (0.079+) (0.108) (0.105) 

Software -0.014 0.063 -0.026 0.005 -0.009 

 (0.126) (0.043) (0.073) (0.096) (0.090) 

Experiment -0.258 -0.041 -0.099 -0.042 -0.011 

 (0.247) (0.033) (0.079) (0.097) (0.072) 

ChatGPT 0.158 -0.071 0.054 -0.014 -0.028 

 (0.145) (0.043) (0.072) (0.088) (0.081) 

Num.Obs. 1161 1161 1161 1161 1161 

AIC 2091.3 26636.6 287.0 -37.4 -71.8 

Notes: The table shows the result of a regression of the estimate of the impact of GenAI on 
productivity, measured as percentage changes in productivity, on a constant, the square of the 
standard error of the estimate (to capture publication bias) and several study characteristics. The 
different models make different assumptions about the error terms as described in the text.  

 

8 We include the squared standard error in the regression, hence do a PEESE analysis. Including the standard error 
(a PET analysis) shows the predicted value at the mean of the explanatory variables (and standard error at ) to be 
significant. Hence a PEESE analysis is recommended so we focus on that one here. 
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Table V shows it’s hard to conclude much about what drives heterogeneity as all estimated 

coefficients are insignificant. That being said, in terms of size of the estimated effects, the 

impact on quantity seems substantially bigger (about 14.5 percentage points) than the impact 

on quality. If we set the other characteristics at their mean value and the standard error squared 

at 0 (a so-called best practice regression), the average for qualitative studies is about 8.0% but 

insignificant (se=6.8%), while the average for quantitative studies is sizeable at 22.5% and 

significant (se=5.2%). 

Similarly, relative to other GenAI tools, the impact of ChatGPT seems smaller (about -2.8 

percentage points) than the impact of other GenAI tools. If we set the other characteristics at 

their mean value and the standard error squared at 0, the average for ChatGPT is 14.5% 

(se=3.6% ), while the average for other GenAI tools is more sizeable at 17.3% (se=6.7%). 

Finally, the estimated size of the impact of industry or method is relatively small. 

Of course, one should be careful in interpreting these differences, not only because we find 

they are statistically insignificant, but also because omitted variables could be correlated both 

with the effect size and the included characteristics. 

VIII: Using Fisher Z measures rather than % changes 

In the above analysis, we used estimated percentage changes as variable of interest. Not all 

studies provide estimates that can be transformed into percentage changes in productivity, for 

example because the outcomes measures used are standardized values. Similarly, not all studies 

provide the mean level of outcome without AI, for all of the regressions used in the study. 

As an alternative, we therefore repeat the above regression using Fisher Z measures. Fisher Z 

is a transformation of the partial correlation coefficient r, the latter being a function of the t 

statistic and the degrees of freedom (df). 

𝑟𝑟𝑖𝑖 =
𝑡𝑡𝑖𝑖

�𝑡𝑡𝑖𝑖2 + (𝑑𝑑𝑓𝑓𝑖𝑖)
 

𝑍𝑍𝐼𝐼 =
1
2

ln �
1 + 𝑟𝑟𝑖𝑖
1 − 𝑟𝑟𝑖𝑖

� 
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The Fisher Z statistics can be categorized as “small”, “medium” and “large” effects based on 

cut-off values from Xue, Reed, and Aert (2024). 

 

Table VI shows descriptive stats. There are almost twice as many Fisher Z estimates, about 

1900 estimates compared to about 1100 for the percentage changes in table I. The median 

Fisher Z value is about 0.029 and the mean about 0.077. Different studies have different number 

of estimates so in the overall average, the studies with more estimates get higher weight. If we 

give each study the same weight, by taking the median estimate within each study and then 

compute descriptive statistics, we get a median Fisher Z score of 0.073 and the mean of about 

0.11. Xue, Reed, and Aert (2024) suggest thresholds of 0.1, 0.23 and 0.41 for small, medium 

and large Fisher Z values, suggesting the partial correlations we find between productivity and 

GenAI use are small to medium sized. 

Table VI further suggests that experimental studies and studies evaluating ChatGPT show a 

stronger association between productivity and GenAI use. 
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IX. Weighting Estimates - Fisher Z 

Table VII - Averaging Estimates using Various Weights % 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

Overall 0.077 0.007 0.063 0.109 0.103 

 (0.023***) (0.001***) (0.020**) (0.023***) (0.020***) 

Num.Obs. 1934 1934 1934 1934 1934 

AIC -1295.7 68372.8 -1936.7 -3121.1 -3051.7 

Notes: The estimated 'overall' effect is the result of a regression of a Fisher Z score, on a constant. 
The different models make different assumptions about the error terms as described in the text. 

 

Table VII reweighs the Fisher Z estimates, giving higher weights to more precise estimates. 

The model with the lowest AIC is now the 3-level method (without VCV, so putting rho at 

zero) suggest the overall average Fisher Z score to be about 0.109 which just meets the medium 

effect threshold. Of course, this estimate does not account for publication bias. 

X. Correcting for Publication Bias - Fisher Z 

Table VIII adds the standard error of the Fisher Z score to the regression and suggests there are 

some signs of publication bias, though the publication bias is insignificant for the models with 

the lowest AIC score. 

Table VIII - Publication Bias %  - PET 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.012 0.006 0.012 0.093 0.091 

 (0.017) (0.000***) (0.015) (0.027**) (0.025**) 

Standard Error 1.756 1.909 1.751 0.288 0.232 

 (0.259***) (0.709*) (0.341***) (0.607) (0.516) 

Num.Obs. 1934 1934 1934 1934 1934 

AIC -1821.3 61840.8 -2294.4 -3120.7 -3051.1 

Notes: The estimated 'overall' effect is the result of a regression of the Fisher Z score on a constant and 
the standard error of the Fisher Z score as a control variable, to capture publication bias. The different 
models make different assumptions about the error terms as described in the text. 
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Controlling for publication bias reduces the association between GenAI and productivity 

somewhat to about 0.093 

XI. PEESE Analysis - Fisher Z 

Having confirmed an effect is likely to exist in the PET regression, we next run the PEESE 

procedure which controls for the squared standard error (instead of just the standard error). 

Table IX - Publication Bias - PEESE 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.061 0.007 0.048 0.098 0.103 

 (0.020**) (0.001***) (0.019*) (0.020***) (0.021***) 

St. Error^2 4.279 18.923 7.744 1.705 -0.006 

 (1.500**) (7.973+) (3.113) (0.608) (0.751) 

Num.Obs. 1934 1934 1934 1934 1934 

AIC -1612.2 65819.7 -2143.6 -3123.3 -3050.9 

Notes: The estimated 'overall' effect is the result of a regression of the estimate of the impact of 
GenAI in productivity, measured as percentage changes in productivity, on a constant and the square 
of the standard error of the estimate, to control for publication bias. The different models make 
different assumptions about the error terms as described in the text. 

 

Interestingly, we again find less evidence of publication bias once we control for the square of 

the error term, and the best estimates of the overall effect again gain in size almost reaching 

the medium effect size threshold (0.098). 
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XII. Heterogeneity Analysis - Fisher Z 

Interestingly, a heterogeneity analysis suggest little difference in partial correlation between 

GenAI tools use and outcomes measured in quality or quantity, between different industries or 

GenAI tools. 

Table X - Heterogeneity Analysis % 

  OLS Fixed Effects Random Effects 3L Effects 3L-VCV Effects 

intercept 0.000 0.006 0.004 0.004 0.001 

 (0.033) (0.000***) (0.032) (0.021) (0.021) 

St. Error^2 3.912 18.996 6.547 1.519 -0.267 

 (0.942***) (8.110+) (2.016+) (0.731) (0.860) 

Quantity -0.007 0.011 -0.009 0.007 0.009 

 (0.037) (0.007) (0.034) (0.015) (0.015) 

Software 0.023 0.006 0.007 0.020 0.020 

 (0.041) (0.014) (0.033) (0.044) (0.042) 

Experiment 0.070 0.001 0.052 0.081 0.085 

 (0.035*) (0.008) (0.032) (0.034*) (0.034*) 

ChatGPT 0.023 -0.010 0.028 0.041 0.049 

 (0.032) (0.010) (0.029) (0.036) (0.035) 

Num.Obs. 1934 1934 1934 1934 1934 

AIC -1700.1 61464.0 -2237.9 -3122.9 -3052.2 

Notes: The estimated 'overall' effect is the result of a regression of the Fisher Z score, on a constant, 
the square of the standard error of the Fisher Z score (to capture publication bias) and several study 
characteristics. The different models make different assumptions about the error terms as described in 
the text. 

But there is evidence that experimental studies have Fisher Z scores that are about 0.081 bigger 

than the Fisher Z scores of quasi-experimental studies. 
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Conclusions 

In the short period of about two and a half years since Generative AI tools like CoPilot and 

ChatGPT were launched, a flurry of papers analyzing the impact of these tools on productivity 

in the workplace have been written. By now, these studies span a large number of settings, 

from writing software, doing data analysis, developing marketing ads, doing legal analysis to 

writing blogs or stories. In this paper, we summarize this literature and perform a meta-analysis 

on more than 1000 estimates from 45 studies. 

We find that the vast majority of studies finds a positive impact of the use of GenAI tools on 

productivity, though about a quarter warn that GenAI tools can have negative effects for the 

productivity of some people or some outcomes. 

Our analysis finds little evidence that publication bias is a major factor in this literature and 

that there is substantial heterogeneity in the estimated effect size. Our preferred specifications 

(3-level models) suggest that the overall average estimated effect, across studies, of GenAI use 

in a task on productivity in that task is about 17%. We further find that association between 

GenAI use and productivity as measured by a Fisher Z score (which is based on the partial 

correlation) is about 0.1, which is at the threshold between a small and medium effect. 

Differences in study or estimate characteristics have limited power in explaining differences 

across estimated effect sizes. Estimates that measure the quantitative impact of GenAI tools 

are on average, about 14.5 percentage points higher than estimates that measure the qualitative 

impact, though this difference is not statistically significant. Similarly, the Fisher Z score does 

not show much difference between qualitative than quantitative studies. We do find, however, 

that Fisher Z scores (but not percentage changes) are significantly higher for experimental 

studies than for quasi-experimental studies. 

While about a third of the studies we analyzed explicitly indicated they used GenAI tools, none 

of these studies provided an estimate of how much time they saved writing the paper or how 

much the quality of their paper increased as the result of using these tools. This study, and our 

experience writing this paper confirms this, suggest 17% is a reasonable estimate. That being 

said, this review is a review of the early studies of GenAI on productivity. As GenAi tools 

might continue to get better, updating this meta-analysis in the future might well be possible 

with much less help of the current authors. 
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List of Studies Used in the Meta-Analysis. 

Alrefai and Alsadi (2024), Asam and Heller (2024), Bono, Grana, and Xu (2024), Bono and 

Xu (2024), Brynjolfsson, Li, and Raymond (2024), Butler et al. (2024), Campero et al. (2022), 

Chen and Chan (2024), Choi, Monahan, and Schwarcz (2023), Cui et al. (2024), Dell’Acqua 

et al. (2024), Dell’Acqua et al. (2025), Doshi and Hauser (2024), Edelman, Ngwe, and Peng 

(2023), Exner et al. (2025), Fitzpatrick et al. (2025), Freeman et al. (2024), Fu et al. (2024), 

Gambacorta et al. (2024), Goh et al. (2024), Haslberger, Gingrich, and Bhatia (2024), 

Hoffmann et al. (2024), Ju and Aral (2025), Kaisen, Li, and Lu (2024), Kreitmeir and Raschky 

(2024), Li et al. (2024), Merali (2024), Miroyan et al. (2025), Mozannar et al. (2024), Ni et al. 

(2024), Noy and Zhang (2023), Otis et al. (2024), K. Peng et al. (2023), S. Peng et al. (2024), 

Qian and Wexler (2024), Quispe and Grijalba (2024), Schwarcz et al. (2025), Spatharioti et al. 

(2025), W. Wang et al. (2024), R. E. Wang et al. (2025), Weber et al. (2024), Wiles et al. 

(2024), Wiske Dillon et al. (2025), Yeverechyahu, Mayya, and Oestreicher-Singer (2024), Yu 

and Qi (2024), Zhou and Lee (2024) 
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