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1. Introduction 

In a recent paper, Stanley and Doucouliagos1, henceforth S&D, argue that meta-analysts should 

never use correct standard errors when performing meta-analyses with partial correlation 

coefficients (PCCs). They present simulations that demonstrate that an alternative, 

“suboptimal” estimator of the standard error – commonly used in the economics meta-analysis 

literature – statistically dominates the “correct” estimator when using either random effects, 

fixed effects, or unrestricted weighted least squares. They recommend its use when the meta-

analysis sample is relatively large and the population value of PCC is relatively small. 

 In this paper, we reproduce S&D’s results but argue that their simulations and 

recommendation may give meta-analysts a misleading impression. We show that S&D’s 

“suboptimal” estimator of the PCC standard error is itself often dominated by other estimators. 

In S&D’s simulation environment, OLS is unbiased, produces reliable confidence intervals and 

is more efficient than their recommended estimator. Furthermore, their recommended estimator 

produces unsatisfactory outcomes when used to test for publication bias.  

 We proceed as follows. Section II describes the research design for S&D’s Monte Carlo 

experiments. Section III demonstrates that we are able to reproduce their results. Section IV 

notes that the data generating process (DGP) in S&D’s Monte Carlo experiments assumes 

homoskedasticity and effect homogeneity. In this setting, OLS is the optimal estimator and we 

show that its performance dominates S&D’s recommended estimator.  

 Section V extends their simulation framework to allow for heteroskedasticity and effect 

heterogeneity. It demonstrates that there are multiple estimators that are superior to S&D’s 

recommended estimator and explains why. Section VI repurposes S&D’s simulation 

environment to show that their recommended estimator produces unsatisfactory outcomes 

when used in Egger regressions and FAT-PET analyses. Section VII concludes by arguing that 
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there is insufficient understanding of the PCC problem to support a best practice 

recommendation for meta-analyses with PCCs. Further research is needed. 

II.  S&D’s Research Design 

S&D’s research design consists of two stages. In the first stage, they generate 50 primary 

studies, each having an equal number of observations (either 25, 50, 100, 200, or 400 

observations). Each primary study is described by the following DGP, where we try to maintain 

S&D’s notation to facilitate comparison with their paper: 

(1) 𝑌𝑌𝑖𝑖 = 1 + 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖 + 𝜀𝜀𝑖𝑖,  

where 𝑖𝑖 = 1,2, … ,𝑁𝑁, 𝑁𝑁 ∈ {25,50,100,200,400); 𝑥𝑥1𝑖𝑖~𝑁𝑁 �0, 1
𝑝𝑝𝑝𝑝𝑝𝑝2

� , 𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {1,3,9); 

𝑥𝑥2𝑖𝑖~𝑁𝑁(0,1); and 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1). A dataset is generated and OLS is used to estimate 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 +

𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + 𝜀𝜀𝑖𝑖, where 𝛽𝛽1 is the effect of interest. The corresponding t value is converted 

to a PCC using Equation (2): 

(2) 𝑟𝑟𝑝𝑝 =     
𝑡𝑡

�𝑡𝑡2+𝑑𝑑𝑑𝑑
  , 

where 𝑑𝑑𝑑𝑑 = 𝑁𝑁 − 3. Note that 𝑝𝑝𝑝𝑝𝑝𝑝 is a parameter that allows one to control the size of the t-

statistic associated with 𝛽̂𝛽1, and hence the size of 𝑟𝑟𝑝𝑝. The three values of 𝑝𝑝𝑝𝑝𝑝𝑝(=1,3,9) 

correspond to a population mean value of 𝑟𝑟𝑝𝑝, 𝜌𝜌, equal to 0.7071, 0.3162, and 0.1104. This 

process is repeated until a meta-analysis sample of 50 PCC values are collected. 

 In the second stage, a DerSimonian and Laird random effects estimator (RE) is used to 

estimate 𝜌𝜌. Two different weights are used. One is based on the “correct” variance of the 

estimate of  𝑟𝑟𝑝𝑝 as recently demonstrated by Aert & Goos2. 

(3) 𝑆𝑆12 = 
�1−𝑟𝑟𝑝𝑝2�

2

𝑑𝑑𝑑𝑑
. 

The other is based on the “suboptimal” estimator that is commonly employed in the economics 

meta-analysis literature1,3: 
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(4) 𝑆𝑆22 = 
�1−𝑟𝑟𝑝𝑝2�
𝑑𝑑𝑑𝑑

 . 

𝑆𝑆22 differs from the “correct” variance in that its numerator is the square root of the numerator 

in 𝑆𝑆12. It can be shown that 𝑆𝑆22 is the sampling variance of 𝑟𝑟𝑝𝑝 when 𝜌𝜌 = 0.4,5   

 For each experiment, two RE estimates of 𝜌𝜌 are produced, one based on 𝑆𝑆12 and one 

based on 𝑆𝑆22. S&D follow the two-stage process above and simulate 10,000 meta-analyses for 

each of 15 experiments corresponding to the different combinations of 𝜌𝜌 ∈

{0.7071,0.3162,0.1104} and 𝑁𝑁 ∈ {25,50,100,200,400). 

III.  Replication of S&D 

We first demonstrate that we are able to replicate S&D’s simulation results. TABLE 1 

reproduces their Table 1. The first two columns identify the research design for the respective 

experiments. The remainder of the table is divided into three sections, reporting results for Bias, 

RMSE, and Coverage.  

 S&D’s Table 1 provides the empirical support for their claim that the “suboptimal” 

estimator for the variance of PCC, 𝑆𝑆22, produces superior results compared to the “correct” 

estimator, 𝑆𝑆12. Across the board, using the suboptimal weights based on 𝑆𝑆22 results in lower 

Bias, smaller RMSE, and coverage rates closer to 95%.  

 For example, when the true value of PCC, 𝜌𝜌, equals 0.7071 and all the primary studies 

in the meta-analysis sample have 25 observations, the RE estimator based on 𝑆𝑆22 produces 

estimates that have an average bias of 0.0235, an average RMSE of 0.0279, and an average 

coverage rate of 84.90%. In contrast, the “correct” estimator,  𝑆𝑆12, produces estimates that have 

an average bias of 0.0455, an average RMSE of 0.0479, and an average coverage rate of 

14.27%. The statistical dominance of 𝑆𝑆22 is true for every experiment in the table. Our efforts 

to replicate S&D are placed side-by-side to S&D’s results and are identical except for minor 

Monte Carlo error. 
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IV.  S&D’s Research Design Is Not Well Suited for Their Experiment 

The observant reader might have noticed in the previous description of S&D’s research design 

that not only was the population value of 𝛽𝛽1 homogeneous across primary studies, but the error 

terms all had the same variance. Since all primary studies included in a given meta-analysis 

also have an equal number of observations, they will share the same population values of 

𝑠𝑠. 𝑒𝑒�𝛽̂𝛽1�. In that case, when sampling variances are unknown and must be estimated, neither 

RE, FE, or UWLS is efficient. The optimal estimator is OLS. We demonstrate this empirically 

in TABLE 2. 

 As before, Columns (1) and (2) report details about the respective experiments. The 

first two columns of each section reproduce the Bias, RMSE, and Coverage values from 

TABLE 1. But there is now a third column to the right of those columns reporting OLS 

estimates (see Columns 5, 8, and 11). As can be clearly seen, for each of the 15 experiments, 

OLS dominates the two RE estimators on all three dimensions.  

 We are now in a position to explain S&D’s results. Having noted that the optimal 

estimator is not RE but OLS, the reason the RE estimator based on 𝑆𝑆22 performs better is 

because it is closest to OLS.  This is evident in the last two columns of TABLE 2. These two 

columns report the coefficient of variation (CV) for 𝑆𝑆1 and 𝑆𝑆2, where CV = (standard deviation 

/ mean) x 100%. The CV for 𝑆𝑆2 is approximately half that of 𝑆𝑆1. In other words, using the 

suboptimal estimate of the standard error produces weights that are more uniform than those 

using the correct estimate, and thus closer to the equal weights employed by OLS. 

V.  A Fairer Test 

As shown above, S&D’s simulations do not provide a fair test of the consequences of using the 

suboptimal estimator for PCC standard errors because their Monte Carlo data environments 

assume homoskedasticity and effect homogeneity in the primary studies. In this section we 
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present results from additional simulations that build on S&D’s research design but add 

heteroskedasticity and effect heterogeneity.   

 Case 1: Homoskedasticity and Effect Homogeneity in the Primary Studies. Case 1 is 

identical to the S&D simulations above. We focus on the case where all primary studies have 

200 observations.  

 Case 2: Heteroskedasticity and Effect Homogeneity in the Primary Studies. Case 2 

introduces heteroskedasticity by allowing primary studies to have differing numbers of 

observations, 𝑁𝑁 ∈ {25,50,100,200,400}. S&D restricted all primary studies for a given meta-

analysis to have the same sample size. We mix primary studies with different sample sizes in 

the same meta-analysis. 50 primary studies are included in each meta-analysis and they consist 

of equal numbers of studies with 25, 50, 100, 200, and 400 observations.  Other than the mix 

in sample sizes, the DGP for the primary studies is the same as before:  

 (5) 𝑌𝑌𝑖𝑖 = 1 + 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖 + 𝜀𝜀𝑖𝑖,  

where 𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑁𝑁 = 25,50,100,200,400; 𝑥𝑥1𝑖𝑖~𝑁𝑁 �0, 1
𝑝𝑝𝑝𝑝𝑝𝑝2

� ,𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {1,3,9); 𝑥𝑥2𝑖𝑖~𝑁𝑁(0,1), 

and 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1). Note that the different sample sizes induce heteroskedasticity in the primary 

studies’ estimated effects, 𝛽̂𝛽1. 

 Case 3: Heteroskedasticity and Heterogeneity in the Primary Studies. Case 3 adds effect 

heterogeneity directly into the DGP of the primary studies. 

 (6) 𝑌𝑌𝑖𝑖 = 1 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑖𝑖 + 𝜀𝜀𝑖𝑖,  

where 𝑖𝑖 = 1,2, … ,𝑁𝑁; 𝑁𝑁 = 25,50,100,200,400; 𝑥𝑥1𝑖𝑖~𝑁𝑁 �0, 1
𝑝𝑝𝑝𝑝𝑝𝑝2

� ,𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {1,3,9); 𝑥𝑥2𝑖𝑖~𝑁𝑁(0,1), 

𝜀𝜀𝑖𝑖~𝑁𝑁(0,1), and 𝛽𝛽1~𝑁𝑁(1,1). 

 The estimators. Our analysis begins by comparing three base meta-analytic estimators 

for 𝜌𝜌: OLS, UWLS, and a third weighted least squares estimator based on random effects. For 

each of the latter two estimators, we compare versions with weights based on 𝑆𝑆12 and 𝑆𝑆22. We 
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include OLS because it is optimal given homoskedasticity and effect homogeneity (Case 1). 

UWLS is a conventional weighted least squares estimator that uses inverse variance weights, 

either 
1
𝑆𝑆12

 or 
1
𝑆𝑆22

 . We include it because Stanley and others advocate for its use.6,7 We also 

include a random effects version of UWLS because Case 3 introduces effect heterogeneity. It 

uses inverse variance weights 
1

�𝑆𝑆12+𝜏𝜏2�
 or 

1
�𝑆𝑆22+𝜏𝜏2�

. As Van Aert & Jackson show, this estimator 

is equivalent to the Hartung-Knapp method for random-effects meta-analysis and is a natural 

extension to S&D’s UWLS estimator.8 To distinguish the two WLS models, we refer to them 

as UWLS(FE) and UWLS(RE).  

 Before describing the experiments, we note one more difference with S&D. S&D 

calculate the population values of 𝜌𝜌 by substituting population values of underlying parameters 

into Equation (2). This is problematic when 𝑟𝑟𝑝𝑝 is characterized by heterogeneity. To address 

this problem, we generate a million observations of 𝑟𝑟𝑝𝑝 for each experiment and use its mean to 

calculate Bias, RMSE, and Coverage. 

 The experiments. Following S&D, we calculate three population values for 𝑟𝑟𝑝𝑝 

corresponding to the scale parameter 𝑝𝑝𝑝𝑝𝑝𝑝 ∈ {1,3,9). Given the three cases above, this yields 9 

experiments. Each experiment generates 10,000 simulated meta-analyses, and each meta-

analysis consists of 50 primary studies. We calculate Bias, RMSE, and Coverage for each of 

the five estimators: OLS, UWLS(FE-𝑆𝑆12), UWLS(FE-𝑆𝑆22), UWLS(RE-𝑆𝑆12) and UWLS(RE-𝑆𝑆22). 

As before, we report CVs for 𝑆𝑆1 and 𝑆𝑆2 to compare their variation. 

 The results. TABLE 3 reports the results for the experiments corresponding to Case 1. 

These results should be similar to S&D’s since the DGP for each experiment is characterized 

homoskedasticity and effect homogeneity in the primary studies. Columns (1) to (3) report 

design details for the respective experiments. Columns (4) and (5) report the CV values for 𝑆𝑆1 

and 𝑆𝑆2, and Columns (6) to (10) report the performance results for the respective estimators. 
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Consistent with TABLE 2, 𝑆𝑆12 and 𝑆𝑆22 display relatively little variation, with coefficients of 

variation ≤ 10%, and CV(𝑆𝑆22) approximately half that of CV(𝑆𝑆12).  

 In line with S&D’s findings, UWLS(FE-𝑆𝑆22) is superior to UWLS(FE-𝑆𝑆12), and 

UWLS(RE-𝑆𝑆22) is superior to UWLS(RE-𝑆𝑆12) on the dimensions of Bias, RMSE, and Coverage. 

However, OLS is superior to them all.  

 For example, the average Bias for OLS is 0.0000 and the next closest is 0.0024 (cf. 

UWLS(RE-𝑆𝑆22)). The average RMSE for OLS is 0.0080, and the next closest is 0.0085 (cf. 

UWLS(RE-𝑆𝑆22)). And the average coverage rate for OLS is 95.08%, and the next closest is 

92.72% (cf. UWLS(FE-𝑆𝑆22) and UWLS(RE-𝑆𝑆22)).  

 TABLE 4 reports results for Case 2, where primary studies are characterized by 

homogeneity in the effect size but heteroskedasticity in the estimated effects. The latter is 

reflected in the increased variation of 𝑆𝑆1 and 𝑆𝑆2, as seen in Columns (4) and (5). The respective 

CV values increase from an average of 5.4% and 2.7% in TABLE 3, to 52.1% and 50.5% in 

TABLE 4. The cause of this increase is that within any given meta-analysis there is now a mix 

of primary studies with observations having 25, 50, 100, 200, and 400 observations.  

 Turning now to the results in Columns (6) through (10), we see that OLS dominates on 

Bias and Coverage but not RMSE. For example, the average Bias for OLS is 0.0001. The next 

closest is 0.0046 for UWLS(FE-𝑆𝑆22) and UWLS(RE-𝑆𝑆22). The average coverage rate for OLS is 

94.97%. The next closest is 89.25%, again for UWLS(RE-𝑆𝑆22). On the other hand, UWLS(FE-

𝑆𝑆22) and UWLS(RE-𝑆𝑆22) dominate on RMSE, with the two estimators being virtually tied. This 

case provides an example where 𝑆𝑆22 is superior to 𝑆𝑆12 without OLS being more efficient. We 

shall have more to say about this case below. 

 TABLE 5 reports results for Case 3, which introduces both heteroskedasticity and 

heterogeneity into the primary studies. Heteroskedasticity is once again introduced through 
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mixing primary studies of different sample sizes in the same meta-analysis. But now the 

population value of 𝛽𝛽1 is constant within a study, but random across studies, 𝛽𝛽1~𝑁𝑁(1,1).  

 OLS again dominates. Average Bias for OLS is -0.0001. Next closest is UWLS(RE-

𝑆𝑆22) with an average bias of 0.0063. Average RMSE for OLS is 0.0437. Next closest is 

UWLS(RE-𝑆𝑆22) with an average RMSE of 0.0447. And average coverage rate for OLS is 

94.49%, with the next closest being UWLS(RE-𝑆𝑆22) with 93.16%. Given the larger degree of 

effect heterogeneity, we expect random effects to be superior to fixed effects, and that is what 

we see. But OLS is superior to all. 

 To summarize our results to this point, while we confirm S&D’s conclusion that using 

weights based on a “suboptimal” estimate of the PCC standard error produces better results 

than those based on the “correct” estimate, in almost all cases the best approach is to employ 

no weights and instead perform meta-analysis using OLS. This result should not be too 

surprising, as others have also found that unweighted estimators can outperform weighted 

ones.9,10   

VI. Bias-Variance Trade-Off Explains TABLES 4 and 5 

It was easy to understand why 𝑆𝑆22 did better than 𝑆𝑆12 in the simulations underlying TABLES 1-

3 where OLS is unbiased and efficient. What is not obvious is why it generally does better in 

the heteroskedastic and heterogeneous environments of TABLES 4 and 5.  

 S&D supply the explanation. As they note, “all inverse-variance meta-analyses, 

whether 𝑆𝑆12 or 𝑆𝑆22, will ‘positively’ bias the meta-analysis estimator”. Inverse variance weights 

introduce bias because they disproportionately weight larger PCC values. This is clearly seen 

in Equations (3) an (4). As 𝑟𝑟𝑝𝑝 becomes more positive, 𝑆𝑆12 and 𝑆𝑆22 decrease, causing  
1
𝑆𝑆12

 and 
1
𝑆𝑆22

 

to increase so that larger values of 𝑟𝑟𝑝𝑝 get more weight. In contrast, OLS does not have a bias 

problem. It is unbiased and consistent. Working against that, though, is the fact that 
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heteroskedasticity favors estimators that give greater weight to observations that are more 

precisely estimated.  

 These two competing factors generate a bias-variance trade-off. In all of our 

experiments, the bias-variance trade-off favors estimators that use 𝑆𝑆22 rather than 𝑆𝑆12. While the 

former produces less precise estimates, they are also less biased. The previous experiments 

demonstrate that OLS can be a better choice than either. But there may be yet other estimators 

that make better trade-offs between bias and variance. The last two columns of TABLES 4 and 

5 give one such example. 

 Define 𝑆̃𝑆 as follows: 

(7) 𝑆̃𝑆 = 
�1−𝑟̅𝑟𝑝𝑝2�

2

𝑑𝑑𝑑𝑑
. 

𝑆̃𝑆 is called a “smooth estimator” because it uses averages.11 The only difference between 

Equation (7) and Equations (3) and (4) is that 𝑟𝑟𝑝𝑝 is replaced with its sample mean, 𝑟̅𝑟𝑝𝑝. If we 

substitute 𝑆̃𝑆 in UWLS(FE) and UWLS(RE), we get FE and RE versions of UWLS(Smooth). 

These are reported in Columns (11) and (12) of TABLES 4 and 5.  

 While OLS performs best with respect to Bias, the two UWLS(Smooth) estimators also 

do well on this dimension. In addition, they have lowest average RMSE in TABLE 4 and 

admirable coverage rates. In TABLE 5, where the PCC values are characterized by effect 

heterogeneity, the RE version of the UWLS(Smooth) estimator dominates on RMSE, and 

performs well on both Bias and Coverage. The UWLS(Smooth) estimators, particularly the RE 

version, make a better trade-off between estimator bias and variance than the other estimators.  

 To summarize, the reason S&D’s “suboptimal” variance estimator produces better 

outcomes in their simulations than the “correct” estimator is because it makes a better trade-

off between bias and variance. However, it doesn’t follow that it should be the meta-analyst’s 
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estimator of choice when working with PCCs. As demonstrated above, other estimators are 

available that may perform better.  

VII. Testing for Publication Bias 

While S&D recommend 𝑆𝑆2 for meta-analyses using PCCs, they do not address its use as an 

explanatory variable in an Egger regression. To investigate this, we return to the DGP of S&D’s 

Table 1 and repeat the experiments. For each simulated meta-analysis of 50 𝑟𝑟𝑝𝑝  values, we 

estimate a meta-regression that includes 𝑆𝑆2 as an explanatory variable: 

(8) 𝑟𝑟𝑝𝑝𝑝𝑝 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆2𝑠𝑠 + 𝜖𝜖𝑠𝑠, 𝑠𝑠 = 1, … ,50; where 

(9) 𝑆𝑆2𝑠𝑠2 = 
�1−𝑟𝑟𝑝𝑝𝑝𝑝�

2

𝑁𝑁−3
  , 𝑁𝑁 = 200. 

 
We estimate 𝛽𝛽0 and 𝛽𝛽1 using the following three estimators: OLS, UWLS(FE-𝑆𝑆22), and 

UWLS(RE-𝑆𝑆22). This process is repeated for a total of 10,000 simulated meta-analyses.  

 As there is no publication bias, all coefficients for 𝑆𝑆2 should be close to zero and the 

estimated constant term should be approximately equal to the true value of 𝜌𝜌. TABLE 6 reports 

the results. The estimated values in the table are averages over 10,000 regressions. For 

example, when 𝜌𝜌 = 0.7071 and OLS is used to estimate Equation (8), the average estimated 

values for 𝛽𝛽0 and 𝛽𝛽1 are 1.416 and -14.136. The corresponding average standard errors are 

0.007 and 0.135. The average R2 is 99.6%, and 100% of the estimated slope coefficients are 

statistically different from 0 at the 5% level. 

 Similar results obtain for the other experiments in the table. In every case, one would 

incorrectly conclude that the meta-analysis samples were characterized by substantial 

publication bias/small study effects. Given that there is no publication bias, it is clear that the 

estimated negative relationship between 𝑟𝑟𝑝𝑝 and 𝑆𝑆2 is entirely a mathematical consequence of 

the formula for 𝑆𝑆2 in Equation (4).  
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 Biased estimates of the slope coefficients produce biased estimates of the constant term. 

In all of the experiments of TABLE 6, the “publication bias adjusted” estimates of 𝜌𝜌, what is 

often called “effect beyond bias”, are greater than 1, a nonsensical result. While the simulations 

in TABLE 6 assume 𝜌𝜌 > 0, the same induced relationship between 𝑟𝑟𝑝𝑝 and 𝑆𝑆2 arises when 𝜌𝜌 <

0 except that the sign of the bias reverses and becomes positive. If we repeat the experiments 

using 𝑆𝑆1 rather than 𝑆𝑆2, the results are marginally better, but still entirely unsatisfactory. 

VIII. Conclusion 

This study builds on the simulation framework of a recent paper by Stanley & Doucouliagos 

(2023). S&D use simulations to support a recommendation that meta-analyses using partial 

correlation coefficients (PCCs) should employ a suboptimal estimator of the PCC’s standard 

error, denoted 𝑆𝑆2, when constructing weights for fixed effect and random effects estimation. 

While we confirm their simulation findings, their simulations and recommendation may give 

meta-analysts a misleading impression.  

 𝑆𝑆2 performs better than the “correct” estimator because it does a better job of trading 

precision for bias. However, as demonstrated in this study, other estimators, including OLS, 

do an even better job. Thus S&D’s findings should not be interpreted as an endorsement of the 

use of 𝑆𝑆2 in meta-analyses with PCCs. This is underscored when one considers the use of 𝑆𝑆2 in 

Egger regressions and FAT-PET analyses. As is well-known, and as we clearly demonstrate, 

the mathematical relationship between PCC and its standard error induces a bias that can 

grossly misrepresent the true extent of publication bias.12,13  

 To summarize our results, if there is no publication bias, there exist better meta-analytic 

estimators than those that base their weights on 𝑆𝑆2. If there is publication bias, there is little 

evidence at the present time to guide recommendations for best practice. This is a topic that 

would benefit from further research, including performance comparisons of PCCs with Fisher’s 

z.14 
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TABLE 1 
Replication of S&D 

 

Research Design 
 

        ρ                n 

Bias RMSE Coverage 

S&D Replication S&D Replication S&D Replication 
𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
0.7071 25 0.0455 0.0235 0.0455 0.0234 0.0479 0.0279 0.0479 0.0280 0.1427 0.8490 0.1429 0.8475 
0.7071 50 0.0226 0.0112 0.0224 0.0111 0.0247 0.0151 0.0246 0.0151 0.4012 0.9478 0.4073 0.9470 
0.7071 100 0.0111 0.0053 0.0110 0.0052 0.0132 0.0090 0.0131 0.0089 0.6601 0.9740 0.6634 0.9771 
0.7071 200 0.0055 0.0025 0.0056 0.0027 0.0074 0.0057 0.0075 0.0057 0.8132 0.9870 0.8018 0.9878 
0.7071 400 0.0028 0.0013 0.0027 0.0013 0.0045 0.0038 0.0045 0.0038 0.8862 0.9907 0.8826 0.9909 
0.3162 25 0.0347 0.0172 0.0346 0.0173 0.0461 0.0336 0.0459 0.0335 0.7350 0.8977 0.7387 0.9031 
0.3162 50 0.0179 0.0083 0.0177 0.0081 0.0265 0.0208 0.0264 0.0207 0.8299 0.9369 0.8372 0.9371 
0.3162 100 0.0089 0.0040 0.0090 0.0041 0.0159 0.0137 0.0159 0.0137 0.8971 0.9516 0.8986 0.9534 
0.3162 200 0.0045 0.0021 0.0045 0.0021 0.0103 0.0094 0.0102 0.0094 0.9270 0.9560 0.9257 0.9581 
0.3162 400 0.0023 0.0011 0.0022 0.0010 0.0068 0.0065 0.0068 0.0064 0.9423 0.9612 0.9422 0.9624 
0.1104 25 0.0127 0.0059 0.0127 0.0059 0.0361 0.0322 0.0355 0.0316 0.9100 0.9381 0.9135 0.9402 
0.1104 50 0.0069 0.0030 0.0073 0.0034 0.0227 0.0211 0.0227 0.0211 0.9330 0.9517 0.9271 0.9473 
0.1104 100 0.0035 0.0015 0.0036 0.0016 0.0151 0.0145 0.0149 0.0143 0.9429 0.9531 0.9447 0.9550 
0.1104 200 0.0017 0.0007 0.0017 0.0007 0.0103 0.0101 0.0103 0.0101 0.9496 0.9552 0.9463 0.9511 
0.1104 400 0.0008 0.0004 0.0010 0.0005 0.0071 0.0071 0.0070 0.0070 0.9509 0.9560 0.9536 0.9562 

 Average 0.0121 0.0059 0.0121 0.0059 0.0196 0.0153 0.0195 0.0153 0.7947 0.9471 0.7950 0.9476 
 

NOTE: Columns (1), (2), (3), (4), (7), (8), (11), and (12) are reproduced from Table 1 in Stanley & Doucouliagos (2023). They come from random 
effects estimates of 𝜌𝜌 using PCC standard errors 𝑆𝑆1 and 𝑆𝑆2. Columns (5), (6), (9), (10), (13), and (14) are replications of S&D’s results based on 
the code they provided with their paper. The table demonstrates that 𝑆𝑆2 is superior to 𝑆𝑆1. 
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TABLE 2 
S&D’s Results Explained 

 

Research Design 
 

   ρ              n 
Bias RMSE Coverage CV 

𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 OLS 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 OLS 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 OLS 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

0.7071 25 0.0454 0.0236 -0.0081 0.0479 0.0280 0.0178 0.1447 0.8441 0.9361 29.0% 14.8% 
0.7071 50 0.0224 0.0111 -0.0037 0.0246 0.0151 0.0111 0.4082 0.9463 0.9430 20.1% 10.1% 
0.7071 100 0.0111 0.0053 -0.0018 0.0131 0.0089 0.0074 0.6609 0.9772 0.9488 14.2% 7.1% 
0.7071 200 0.0055 0.0026 -0.0009 0.0075 0.0057 0.0052 0.8124 0.9852 0.9481 10.0% 5.0% 
0.7071 400 0.0028 0.0014 -0.0004 0.0045 0.0038 0.0036 0.8828 0.9915 0.9514 7.1% 3.5% 
0.3162 25 0.0345 0.0172 -0.0064 0.0459 0.0335 0.0276 0.7400 0.9029 0.9465 13.2% 6.9% 
0.3162 50 0.0178 0.0082 -0.0030 0.0264 0.0207 0.0187 0.8366 0.9368 0.9508 9.1% 4.7% 
0.3162 100 0.0089 0.0040 -0.0015 0.0159 0.0137 0.0130 0.8943 0.9542 0.9506 6.3% 3.2% 
0.3162 200 0.0044 0.0020 -0.0007 0.0102 0.0094 0.0091 0.9280 0.9583 0.9498 4.5% 2.3% 
0.3162 400 0.0023 0.0010 -0.0003 0.0068 0.0064 0.0063 0.9441 0.9607 0.9516 3.2% 1.6% 
0.1104 25 0.0128 0.0060 -0.0025 0.0355 0.0316 0.0288 0.9158 0.9435 0.9517 7.1% 3.7% 
0.1104 50 0.0067 0.0029 -0.0013 0.0227 0.0211 0.0202 0.9323 0.9492 0.9523 4.1% 2.1% 
0.1104 100 0.0035 0.0015 -0.0005 0.0149 0.0143 0.0140 0.9462 0.9560 0.9527 2.5% 1.3% 
0.1104 200 0.0018 0.0009 -0.0001 0.0103 0.0101 0.0099 0.9513 0.9577 0.9527 1.7% 0.9% 
0.1104 400 0.0008 0.0003 -0.0002 0.0070 0.0070 0.0069 0.9569 0.9603 0.9529 1.1% 0.6% 

 Average 0.0120 0.0059 -0.0021 0.0195 0.0153 0.0133 0.7970 0.9483 0.9493 8.9% 4.5% 
 

NOTE: Columns (1), (2), (3), (4), (6), (7), (9), (10) are reproduced from TABLE 1. The OLS results in Columns (5), (8), and (11) use the same 
meta-analysis datasets but estimate 𝜌𝜌 from an OLS regression of 𝑟𝑟𝑝𝑝 on a constant term. Columns (12) and (13) report the coefficient of variation 
(CV) of 𝑆𝑆1 and 𝑆𝑆2. The table demonstrates that unweighted, OLS regression is superior to weighted, random effects estimates and that the 𝑆𝑆2 
estimator is better than the 𝑆𝑆1 estimator because it is closest to OLS.   
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TABLE 3 
Comparison of Estimators Given Homoskedasticity and Homogeneity in the Primary Studies (Case 1) 

 

Design CV 
OLS 

UWLS(FE) UWLS(RE) 
ρ n τ2 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
BIAS 

0.7062 200 0 10.0% 5.0% 0.0000 0.0071 0.0036 0.0064 0.0036 
0.3155 200 0 4.5% 2.3% -0.0001 0.0056 0.0027 0.0050 0.0026 
0.1102 200 0 1.7% 0.9% 0.0001 0.0023 0.0011 0.0020 0.0011 

Average    5.4% 2.7% 0.0000 0.0050 0.0025 0.0045 0.0024 
RMSE 

0.7062 200 0 10.0% 5.0% 0.0050 0.0087 0.0061 0.0081 0.0061 
0.3155 200 0 4.5% 2.3% 0.0091 0.0108 0.0095 0.0105 0.0095 
0.1102 200 0 1.7% 0.9% 0.0099 0.0103 0.0100 0.0102 0.0100 

Average  5.4% 2.7% 0.0080 0.0099 0.0086 0.0096 0.0085 
COVERAGE 

0.7062 200 0 10.0% 5.0% 0.9510 0.7127 0.8928 0.7515 0.8928 
0.3155 200 0 4.5% 2.3% 0.9485 0.9065 0.9377 0.9139 0.9378 
0.1102 200 0 1.7% 0.9% 0.9530 0.9460 0.9511 0.9466 0.9510 

Average  5.4% 2.7% 0.9508 0.8551 0.9272 0.8707 0.9272 
 
NOTE: The DGP underlying the simulations in this table are identical to the 𝜌𝜌 = {0.7071,0.3162.0.1104}, 𝑁𝑁 = 200 experiments in TABLES 1 
and 2. The main differences are (i) that 𝜌𝜌 is calculated by simulating 1,000,000 values of 𝑟𝑟𝑝𝑝 and taking their average, and (ii) it compares 
performance for the following estimators: OLS, UWLS(FE-𝑆𝑆12), UWLS(FE-𝑆𝑆22), UWLS(RE-𝑆𝑆12) and UWLS(RE-𝑆𝑆22). This table confirms the 
finding that OLS dominates the weighted estimators when primary studies are characterized by homoskedasticity and effect homogeneity.  
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TABLE 4 
Comparison of Estimators Given Heteroskedasticity and Homogeneity in the Primary Studies (Case 2) 

 

Design CV OLS UWLS(FE) UWLS(RE) UWLS(Smooth) 
ρ n τ2 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 FE RE 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
BIAS 

0.7042 25,50,100,200,400 0 56.7% 51.7% 0.0000 0.0115 0.0064 0.0113 0.0064 0.0018 0.0018 
0.3138 25,50,100,200,400 0 50.5% 50.0% 0.0000 0.0093 0.0052 0.0092 0.0051 0.0014 0.0014 
0.1096 25,50,100,200,400 0 49.2% 49.7% 0.0003 0.0039 0.0023 0.0039 0.0023 0.0009 0.0009 

Average 52.1% 50.5% 0.0001 0.0082 0.0046 0.0081 0.0046 0.0014 0.0014 
RMSE 

0.7042 25,50,100,200,400 0 56.7% 51.7% 0.0095 0.0130 0.0086 0.0128 0.0086 0.0061 0.0061 
0.3138 25,50,100,200,400 0 50.5% 50.0% 0.0164 0.0142 0.0116 0.0143 0.0117 0.0104 0.0106 
0.1096 25,50,100,200,400 0 49.2% 49.7% 0.0178 0.0123 0.0116 0.0125 0.0117 0.0113 0.0114 

Average 52.1% 50.5% 0.0146 0.0131 0.0106 0.0132 0.0107 0.0093 0.0094 
COVERAGE 

0.7042 25,50,100,200,400 0 56.7% 51.7% 0.9458 0.5197 0.8016 0.5670 0.8016 0.9376 0.9418 
0.3138 25,50,100,200,400 0 50.5% 50.0% 0.9509 0.8664 0.9222 0.8825 0.9255 0.9493 0.9544 
0.1096 25,50,100,200,400 0 49.2% 49.7% 0.9524 0.9400 0.9475 0.9455 0.9504 0.9514 0.9549 

Average 52.1% 50.5% 0.9497 0.7754 0.8904 0.7983 0.8925 0.9461 0.9504 
 
NOTE: The simulations underlying this table are identical to those in TABLE 3 except that the DGP of the primary studies are characterized by 
heteroskedasticity and effect homogeneity as described by Equation (5) in the text. In addition to the estimators in TABLE 3, the table also reports 
estimates from two additional estimators: an unrestricted WLS Fixed Effect estimator, and an unrestricted WLS Random Effects estimator, where 
the respective PCC standard errors are given by the “smooth estimator” of Equation (7). While OLS dominates on Bias and Coverage, the weighted 
regressions using 𝑆𝑆2 are superior to OLS on RMSE. However, the two UWLS(Smooth) estimators have lowest RMSE. 
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TABLE 5 
Comparison of Estimators Given Heteroskedasticity and Heterogeneity in the Primary Studies (Case 3) 

 

Design CV 
OLS 

UWLS(FE) UWLS(RE) UWLS(Smooth) 
ρ n τ2 𝑺𝑺𝟏𝟏 𝑺𝑺𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 𝑺𝑺𝟏𝟏𝟐𝟐 𝑺𝑺𝟐𝟐𝟐𝟐 FE RE 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
BIAS 

0.5115 25,50,100,200,400 1 80.6% 61.1% 0.0001 0.3273 0.1950 0.0233 0.0105 0.0005 0.0017 
0.2810 25,50,100,200,400 1 53.9% 51.1% -0.0001 0.0982 0.0452 0.0095 0.0062 0.0008 0.0005 
0.1076 25,50,100,200,400 1 49.4% 49.7% -0.0003 0.0085 0.0042 0.0043 0.0022 0.0004 0.0001 

Average 61.3% 54.0% -0.0001 0.1447 0.0815 0.0124 0.0063 0.0006 0.0008 
RMSE 

0.5115 25,50,100,200,400 1 80.6% 61.1% 0.0671 0.3345 0.2103 0.0790 0.0708 0.0886 0.0677 
0.2810 25,50,100,200,400 1 53.9% 51.1% 0.0406 0.1170 0.0721 0.0431 0.0418 0.0515 0.0404 
0.1076 25,50,100,200,400 1 49.4% 49.7% 0.0233 0.0263 0.0245 0.0223 0.0215 0.0235 0.0210 

Average 61.3% 54.0% 0.0437 0.1593 0.1023 0.0481 0.0447 0.0545 0.0430 
COVERAGE 

0.5115 25,50,100,200,400 1 80.6% 61.1% 0.9365 0.0275 0.1915 0.8716 0.9154 0.8447 0.9342 
0.2810 25,50,100,200,400 1 53.9% 51.1% 0.9475 0.3779 0.6936 0.9271 0.9361 0.8528 0.9463 
0.1076 25,50,100,200,400 1 49.4% 49.7% 0.9507 0.8571 0.8769 0.9403 0.9434 0.8830 0.9493 

Average 61.3% 54.0% 0.9449 0.4208 0.5873 0.9130 0.9316 0.8602 0.9433 
 

NOTE: The simulations underlying this table are identical to those in TABLE 4 except that the DGP of the primary studies are characterized by 
heteroskedasticity and effect heterogeneity as described by Equation (6) in the text. The table demonstrates that OLS dominates the weighted 
estimators using 𝑆𝑆1 and 𝑆𝑆2. However, the UWLS(Smooth-RE) estimator has lowest RMSE. 
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TABLE 6 
FAT/PET with 𝑺𝑺𝟐𝟐 

 

Research Design Estimated Equation Type I Error Rate ρ n 

OLS-𝑺𝑺𝟐𝟐 

0.7071 200 𝑟𝑟𝑝𝑝 = 1.416 − 14.136 𝑆𝑆2,    R2 = 0.996 
                 (0.007)    (0.135) 100% 

0.3162 200 𝑟𝑟𝑝𝑝 = 3.124 − 41.743 𝑆𝑆2,    R2 = 0.978 
                 (0.060)    (0.891) 100% 

0.1104 200 𝑟𝑟𝑝𝑝 = 7.780 − 108.847 𝑆𝑆2,    R2 = 0.841   
                 (0.479)    (6.791) 100% 

UWLS(FE-𝑺𝑺𝟐𝟐) 

0.7 200 𝑟𝑟𝑝𝑝 = 1.409 − 14.011 𝑆𝑆2,    R2 = 0.996 
                 (0.007)    (0.133) 100% 

0.3 200 𝑟𝑟𝑝𝑝 = 3.100 − 41.390 𝑆𝑆2,    R2 = 0.978 
                 (0.059)    (0.878) 100% 

0.1 200 𝑟𝑟𝑝𝑝 = 7.731 − 108.159 𝑆𝑆2,    R2 = 0.843 
                 (0.472)    (6.705) 100% 

UWLS(RE-𝑺𝑺𝟐𝟐) 

0.7 200 𝑟𝑟𝑝𝑝 = 1.409 − 14.011 𝑆𝑆2,    R2 = 0.996 
                 (0.007)    (0.133) 100% 

0.3 200 𝑟𝑟𝑝𝑝 = 3.101 − 41.406 𝑆𝑆2,    R2 = 0.978 
                 (0.059)    (0.879) 100% 

0.1 200 𝑟𝑟𝑝𝑝 = 7.735 − 108.209 𝑆𝑆2,    R2 = 0.843 
                 (0.473)    (6.712) 100% 

 
NOTE: The DGP underlying the simulations in this table are identical to the 𝜌𝜌 =
{0.7071, 0.3162, 0.1104}, 𝑁𝑁 = 200 experiments in TABLE 2. However, instead of estimating 
𝜌𝜌, the estimated 𝑟𝑟𝑝𝑝 and 𝑆𝑆2 values are used to estimate Equation (8). The values in the table are 
averages of estimated parameters from 10,000 meta-analyses. The table demonstrates the 
extent to which the mathematical relationship between 𝑟𝑟𝑝𝑝 and 𝑆𝑆2 given by Equation (4) causes 
Egger regressions/FAT-PET analyses to misestimate the existence of publication bias and the 
“effect beyond bias”. 
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