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Abstract: Calculating statistical power before estimation is considered good practice. 
However, there is no generally accepted method for calculating power after estimation. There 
are several reasons why one would want to do this. First, there is general interest in knowing 
whether ex ante power calculations are dependable guides of actual power. Further, knowing 
the statistical power of an estimated equation can aid one in interpreting the associated 
estimates. This study proposes a simple method for calculating power after estimation. To 
assess its performance, we conduct Monte Carlo experiments customized to produce simulated 
datasets that resemble actual data from studies funded by the International Initiative for Impact 
Evaluation (3ie). In addition to the final reports, 3ie provided ex ante power calculations from 
the funding applications, along with data and code to reproduce the estimates in the final 
reports. After determining that our method performs adequately, we apply it to the 3ie-funded 
studies. We find an average ex post power of 75.4%, not far from the 80% commonly claimed 
in the 3ie funding applications. However, we observe significantly more estimates of low 
power than would be expected given the ex ante claims. We conclude by providing three 
examples to illustrate how ex post power can aid the interpretation of estimates that are (i) 
insignificant and low powered, (ii) insignificant and high powered, and (iii) significant and low 
powered. 
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I. Introduction 

Statistical power is the probability that a sample produces a statistically significant 

estimate given a nonzero effect in the population. Good practice calls for researchers to 

calculate statistical power when designing experiments. If a study has low power, a 

researcher may fail to obtain a significant estimate even if a meaningful effect exists. 

Knowing that a study has low power can be useful even if a study produces a significant 

estimate. It can alert the researcher that the given effect suffers from publication bias, 

what Gelman & Carlin (2014) call Type M error. 

 Calculations of statistical power before estimation is known as ex ante power. 

There exists a wide variety of methods and procedures for doing this (Huber, 2019; 

Gertler et al., 2016; Glennerster & Takavarasha, 2013; Coppock, 2013; Djimeu & 

Houndolo, 2016). However, predicting vital aspects of estimation before the data are seen 

is speculative business. As Coppock (2013) notes, “in most power analyses you are in fact 

seeing what happens with numbers that are to some extent made up”. As a result, it would 

be preferable to calculate statistical power after estimation is completed; that is, ex post 

power. However, to date, there is no generally accepted procedure for doing so. 

 This study makes two contributions. First, we present a simple method for 

calculating ex post power that is a variant of previous approaches (Ioannidis et al., 2017; 

McKenzie & Ozier, 2019). We demonstrate its usefulness through a series of Monte Carlo 

experiments to assess its performance. The experiments are designed to be similar to 

“real-world” data from projects funded by the International Initiative for Impact 

Evaluation (3ie).   

Our second contribution consists of two applications of our method. Through an 

agreement with 3ie, we were able to access research materials for 23 studies funded by 

3ie. 3ie supplied the original funding applications, including ex ante power calculations, 
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along with the final report, data, and statistical code. This allowed us to compare our 

estimates of ex post power with researchers’ ex ante calculations for 47 estimated 

treatment effects drawn from the 23 studies. We observe an average ex post power of 

75.4%, not far from the 80% commonly claimed in the 3ie funding applications. However, 

a disproportionate number are low-powered estimates; more than would be expected if 

all studies had 80% true power. Using regression analysis, we find that most of the 

differences between ex post and ex ante power (58%) can be explained by differences in 

planned and actual total observations, number of clusters, and intracluster correlation 

(ICC). 

Our other application uses three examples to illustrate how our method can be 

used to assess individual estimates. The first two examples feature statistically 

insignificant estimates from 3ie’s sample of studies. We show how calculation of ex post 

power can provide insight into whether an insignificant estimate is due to a negligible 

treatment effect, or, alternatively, a research design that is insufficiently powered. Our 

third example consists of a statistically significant estimate. We show how calculation of 

ex post power can alert researchers to the possible seriousness of Type M error (Gellman 

& Carlin, 2014) whereby significant estimates overstate the size of the population effect. 

Our study proceeds as follows. Section 2 provides a brief introduction to the 

subject of statistical power. Section 3 reviews the literature on ex post power and 

presents our method, something we call the SE-ES method. Section 4 discusses the design 

of the Monte Carlo experiments used to assess the performance of the SE-ES method. 

Section 5 reports the associated results. Sections 6 and 7 provide two applications of the 

SE-ES method to 3ie-funded impact evaluations. Section 8 concludes. 
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2. Calculation of Power 
 
Statistical power is a function of relatively few parameters. Let 𝐸𝐸𝐸𝐸 be the population effect 

size of a given treatment; 𝐸𝐸𝐸𝐸�  a sample estimate of 𝐸𝐸𝐸𝐸; 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  the population standard 

deviation of the distribution of sample estimates, 𝐸𝐸𝐸𝐸� ; and 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)��  a sample estimate of 

𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� .  Define 

(1.a) 𝑡𝑡𝐸𝐸𝐸𝐸 ≡   
𝐸𝐸𝐸𝐸

𝑠𝑠.𝑒𝑒.(𝐸𝐸𝐸𝐸)�  , 

and 

(1.b) �̂�𝑡𝐸𝐸𝐸𝐸 ≡   
𝐸𝐸𝐸𝐸�

𝑠𝑠.𝑒𝑒.(𝐸𝐸𝐸𝐸)��  . 

If �̂�𝑡𝐸𝐸𝐸𝐸 is distributed according to Student’s t distribution with 𝜐𝜐 degrees of freedom, 

then power is calculated by  

(2) 𝑡𝑡𝜐𝜐,1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = �𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� − 𝑡𝑡𝐸𝐸𝐸𝐸�. 

In other words, given values for (i) the effect size, 𝐸𝐸𝐸𝐸; (ii) significance level, 𝛼𝛼; and (iii) 

degrees of freedom, 𝜐𝜐; one can calculate 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 as a function of the population parameter, 

𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� .  

 FIGURE 1 illustrates the relationship between 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 and 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� . We set 𝛼𝛼 =

5% and 𝜐𝜐 = 50. Accordingly, 𝑡𝑡50,0.975 ≈ 2. For positive values of 𝐸𝐸𝐸𝐸, 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 is the 

probability that �̂�𝑡𝐸𝐸𝐸𝐸 > 2.1 FIGURE 1 shows three cases: (i) 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� > 𝑡𝑡𝐸𝐸𝐸𝐸, (ii)𝑡𝑡𝜐𝜐,1−𝛼𝛼

2� = 𝑡𝑡𝐸𝐸𝐸𝐸, 

and (iii) 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� < 𝑡𝑡𝐸𝐸𝐸𝐸. We fix 𝐸𝐸𝐸𝐸 = 4 in all three cases and reduce the value of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  

in steps from 3 to 2 to 1.5. With each step, the distribution of �̂�𝑡𝐸𝐸𝐸𝐸 shifts to the right.  

 
1 Strictly speaking, it is the sum of the probabilities that �̂�𝑡𝐸𝐸𝐸𝐸 > 2 and �̂�𝑡𝐸𝐸𝐸𝐸 < −2. However, as a practical matter, 
except for very small values of |𝑡𝑡𝐸𝐸𝐸𝐸|, only one of the tails of the distribution of �̂�𝑡𝐸𝐸𝐸𝐸 has a non-negligible probability.   



4 
 

For example, when 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� = 𝑡𝑡50,0.975 = 2, and 𝑡𝑡𝐸𝐸𝐸𝐸 = 4

3
= 1.33, then �𝑡𝑡𝜐𝜐,1−𝛼𝛼

2� −

𝑡𝑡𝐸𝐸𝐸𝐸� = 0.67. The value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 that makes 𝑡𝑡𝜐𝜐,1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 0.67 is 0.253, because 𝑡𝑡50,0.747 =

𝑡𝑡50,1−0.253 = 0.67. As 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  decreases to 2 and then 1.5, 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 increases to 0.500 and 

0.747. In words, as the estimates of 𝐸𝐸𝐸𝐸 becomes more precise, a larger percentage of 

estimates will be statistically significant. 

An important insight from Equation (2) is that it highlights that analytic methods 

for calculating ex ante power essentially consist of forecasting 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� . Programs like 

Stata’s power command and the free software program G*Power (Faul et al., 2007) 

require the user to input various aspects of the data, such as the sample size, standard 

deviation of the output variable, percent of variation in the dependent variable explained 

by covariates, percent of observations receiving treatment, number of clusters, and the 

intra-class correlation (if relevant). These inputs are combined to produce an estimate of 

𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� , which in turn is used to calculate power. It bears emphasizing that the requisite 

inputs are supplied before one actually sees the data. 

III. Literature review of ex post power and description of the SE-ES method 

”Observed power”. One method that has been commonly used in the past for calculating 

power after estimation (“ex post power”) is often referred to as “observed power”. It uses 

both the estimated effect size, 𝐸𝐸𝐸𝐸)� , and its associated estimated standard error,  𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�� . 

Specifically, it replaces 𝑡𝑡𝐸𝐸𝐸𝐸 with �̂�𝑡𝐸𝐸𝐸𝐸 in Equation (2). This approach is now widely 

recognized as flawed (Hoenig & Heisey, 2001; Yuan & Maxwell, 2005). It produces a 

biased estimate of true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 when true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 ≠ 50%. Arguably worse, it produces 

highly imprecise estimates. This is illustrated by three examples in FIGURE 2. 

 When true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 50%, “observed power” is uniformly distributed between 0% 

and 100%. This is illustrated in the top panel. While “observed power” is unbiased in this 
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case, it is very imprecise. When true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 < 50%, not only is “observed power” an 

imprecise estimator, it is also upwardly biased. The middle panel of FIGURE 2 shows the 

distribution of “observed power” when true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 20%. It has a mean of 27.5%. When 

true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 > 50%, “observed power” is biased in the opposite direction. The bottom 

panel shows the associated distribution when true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 80%.  It has a mean of 

72.3%. As these deficiencies have become recognized, “observed power” has fallen into 

disfavor.  

Ex ante methods applied to ex post data. Another approach to estimating ex post 

power uses ex ante methods where the inputs consist of characteristics from the final 

dataset. An example of this is Skiba & Tobacman (2019). To demonstrate that their 

empirical analysis is sufficiently sized, they calculate sample sizes necessary to achieve 

80% power when estimating economically important effect sizes. They do this using 

Stata’s power command, which is commonly used for ex ante power analyses. While they 

solve for sample sizes, they could just as easily have supplied their actual sample sizes to 

calculate ex post power. The point is, they use the same formulae/software that are used 

for ex ante power calculations to address power concerns after estimation. Or to state it 

differently, they input sample characteristics to predict 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  rather than using direct 

estimates of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  from the final estimating equation.  

Bootstrapping procedures. Kleinman & Huang (2017) propose a bootstrapping 

procedure for estimating power for a binary treatment. Bootstrapping is related, but 

different, from simulation. Simulation uses sample characteristics to build artificial 

datasets that resemble the data on which final estimation will be done. In contrast, 

bootstrapping builds artificial datasets using the data itself. While K&H’s method can only 

be applied to pre-treatment data, it illustrates the bootstrapping approach.  
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Pre-treatment data are randomly assigned to treatment and control groups.  The 

control group is resampled with replacement to create artificial control datasets. The 

treatment group is also resampled with replacement, but a hypothesized treatment effect 

is added to each observation’s output variable. Treatment and control datasets are then 

matched and tested for differences. The bootstrapped power equals the percent of tests 

in which the null hypothesis is rejected. 

Brown, Lambert, & Wojan (2019) recently proposed another bootstrapping 

procedure that is specifically designed to be applied post-estimation. Further, it easily 

handles continuous treatments. They take coefficient estimates and residuals from the 

final estimating equation. They then construct a parent, artificial dataset, replacing the 

estimated treatment effect with a hypothetical treatment effect. New values of the output 

variable are created by combining predictions from the edited regression specification 

with the original residuals. Paired bootstrapping is applied to this parent dataset to 

produce multiple artificial datasets. Estimation is then carried out on the individual, 

artificial datasets. Ex post power is calculated as the percent of times the null hypothesis 

is rejected. 

Methods that rely on the estimated standard error. As noted above, other than 

“observed power”, none of the methods above use the estimate of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  that comes 

from the final estimating equation. Two recent approaches do this. Ioannidis, Stanley, & 

Doucouliagos (2017) combine meta-analysis with the estimated standard error to 

produce ex post power estimates. They reach the following startling conclusion: “We 

survey 159 empirical economics literatures that draw upon 64,076 estimates of economic 

parameters reported in more than 6,700 empirical studies. Half of the research areas 

have nearly 90% of their results under-powered. The median statistical power is 18%, or 

less.”  
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Essentially, IS&D substitute 
𝐸𝐸𝐸𝐸� 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑀𝑀𝑎𝑎𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑠𝑠.𝑒𝑒.(𝐸𝐸𝐸𝐸)��  for 𝑡𝑡𝐸𝐸𝐸𝐸 in Equation (2). That is, they 

substitute the estimate of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  from individual studies for the population parameter, 

𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� ; and the literature-wide, overall average estimated effect, 𝐸𝐸𝐸𝐸�𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀−𝑀𝑀𝑎𝑎𝑀𝑀𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 for  

𝐸𝐸𝐸𝐸. This allows them to calculate ex post power for each of the 64,075 estimates in their 

sample. While useful for calculating literature-wide estimates of overall power, IS&D’s 

approach isn’t applicable to single studies. It requires an estimate from a meta-analysis 

and thus cannot be applied to a stand-alone, individual estimate.  

In contrast, McKenzie & Ozier (2019) propose an alternative method that is 

applicable to single studies. The main difference to what we propose in this paper is that 

they use Equation (2) to calculate the value of 𝐸𝐸𝐸𝐸 that can be estimated with a given value 

of 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃:2 

(3) 𝐸𝐸𝐸𝐸 = �𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� − 𝑡𝑡𝜐𝜐,1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃� × 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�� . 

Note that everything on the right-hand-side of the equation is either a given parameter 

(𝜐𝜐, 𝛼𝛼, 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃) or comes from the equation after it has been estimated (𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�� ).  

The Standard Error-Effect Size (SE-ES) method. A rearrangement of terms in 

Equation (3) produces the following equation for estimating ex post power for (i) a given 

effect size, 𝐸𝐸𝐸𝐸; (ii) estimated standard error, 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�� ; and (iii) parameter values 𝜐𝜐 and 

𝛼𝛼: 

(4) 𝑡𝑡𝜐𝜐,1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� −  

𝐸𝐸𝐸𝐸
𝑠𝑠.𝑒𝑒.(𝐸𝐸𝐸𝐸)��  . 

We call this the Standard Error-Effect Size (SE-ES) method. Unlike “observed power”, the 

SE-ES method uses a hypothesized value for ES rather than an estimated value. It is 

 
2 This is commonly known as the Minimum Detectable Effect (MDE). 
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applicable anytime an estimation procedure produces an estimate of the standard error, 

and the ratio 
𝐸𝐸𝐸𝐸�

𝑠𝑠.𝑒𝑒.(𝐸𝐸𝐸𝐸)��  is distributed according to Student’s t distribution with 𝜐𝜐 degrees 

of freedom. When finite sample statistics are not applicable, 𝑡𝑡𝜐𝜐,1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃  and 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  can 

be replaced by 𝑧𝑧1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃  and 𝑧𝑧1−𝛼𝛼
2� , respectively, where 𝑧𝑧 is distributed standard 

normal.  

 In addition to being simple to apply, Equation (4) has the added benefit of easily 

accommodating alternative estimation procedures. The formula is accurate for OLS, 

cluster-robust OLS, IV estimation, and alternative maximum likelihood procedures, 

among others. All that is required is that the estimate of the standard error be an accurate 

measure of the true variability of 𝐸𝐸𝐸𝐸� . This will not always be the case. For example, it is 

well known that conventional estimates of cluster-robust standard errors may 

underestimate true variability when the number of clusters is small (MacKinnon, 2019; 

Roodman et al., 2019). In these cases, using conventional sandwich estimators to 

estimate standard errors will result in biased ex post power estimates.  

 As we saw in the case of “observed power” when true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 50%, just being 

unbiased is insufficient to make an estimator useful. We also want it to be precise. On this 

count, both Ioannidis, Stanley & Doucouliagos (2017) and McKenzie & Ozier (2019) 

provide little help.3  While they apply their methods to estimate ex post 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 and ex 

post MDE, respectively, there is little evidence to assess their reliability. Accordingly, our 

 
3 McKenzie and Ozier (2019) do provide simulation evidence, but it focuses on MDE, not Power. Further, 
since it is a blog and not an academic article, it only provides minimal evidence of the reliability of their 
method. 
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next order of business is to assess the performance of the SE-ES method as an estimator 

of 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃.4 

IV. Design of the Monte Carlo Experiments 

In this section we discuss the design of the Monte Carlo experiments we use to assess the 

performance of the SE-ES power estimator. Since the goal is to apply this estimator to our 

sample of 3ie-funded projects, we first describe those projects and identify key data 

characteristics that we want to incorporate in the design of the experiments. 

 Introduction to 3ie. 3ie is a non-governmental funding agency whose primary 

mission is to support impact evaluations and systematic reviews of programs to help the 

poor in low- and middle-income countries. They were founded in 2008 and have an 

annual budget of approximately $25 million (USD).  

From its beginning, 3ie recognized the importance of transparency and research 

quality. As a result, they implemented policies that enabled a greater level of data quality 

assurance than typical review processes for journals or institutional donors. Over time, 

they required highly detailed pre-analysis plans, evaluation registration, and survey data 

sharing.  Upon completion, as a contingency of their funding, researchers provided 3ie 

with the data supporting their analyses. After removing any information that allowed 

personal identification, 3ie warehoused these data for later, secondary research.  

As part of the application process, 3ie required applicants to provide ex ante 

power calculations to ensure that their evaluation had sufficient power to identify 

economically important treatment effects. This was one of the criteria 3ie used to assess 

the strength of the research applications they received. After the evaluation concluded, 

 
4 Tian (2021) compares the SE-ES method to the bootstrapping procedure of Brown, Lambert, & Wojan 
(2019). He finds that the SE-ES performs slightly better on the dimension of mean squared error. However, 
its major advantage lies in its ease of application as it does not require the construction of thousands of 
artificial datasets.  
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the researchers submitted their reports to 3ie along with the data behind their analysis. 

Over time, these requirements expanded to require researchers to also include statistical 

code that allowed for push-button replication (3ie(a), n.d.) These policies eventually 

resulted in 3ie’s Transparency, Research, and Ethics policy (3ie(b), n.d.). 

Through an agreement with 3ie, we were given access to the full files for 23 impact 

evaluations. As a result, we not only have the final estimates, with the respective standard 

errors, but we also know the hypothetical effect sizes that were used to calculate ex ante 

power. Further, we have the data itself that allows us, in most cases, to identify 

differences between planned and actual values of sample size, number of clusters, ICC 

values, and other data characteristics important for statistical power.  

Our confidentiality agreement with 3ie prevents us from revealing the identity of 

the impact evaluations included in our sample. However, the following list, taken from 

3ie’s website (3ie(c), n.d.), gives an idea of the kinds of studies that 3ie funds. Note that 

none of these studies are included in our sample. 

• “Community advocacy forums and public service delivery in Uganda: Impact and the 
role of information, deliberation and administrative placement” 
 

• “Evaluation of secondary school teacher training under the School Sector 
Development Programme in Nepal” 
 

• “Impacts of supportive feedback and nonmonetary incentives on child immunisation 
in Ethiopia” 
 

• “Impacts of electronic case management systems on court congestion in the 
Philippines” 
 

• “Impacts of the Stimulate, Appreciate, Learn and Transfer community engagement 
approach to increase immunization coverage in Assam, India” 
 

• “Impacts of a novel mHealth platform to track maternal and child health in Udaipur, 
India” 
 

• “Impacts of engaging communities through traditional and religious leaders on 
vaccination coverage in Cross River State, Nigeria” 

 

https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/community-advocacy-forums-and-public-service-delivery
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/community-advocacy-forums-and-public-service-delivery
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/evaluation-secondary-school-teacher-training-under
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/evaluation-secondary-school-teacher-training-under
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-supportive-feedback-and-nonmonetary-incentives
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-supportive-feedback-and-nonmonetary-incentives
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-electronic-case-management-systems-court
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-electronic-case-management-systems-court
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-stimulate-appreciate-learn-and-transfer
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-stimulate-appreciate-learn-and-transfer
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-novel-mhealth-platform-track-maternal-and
https://www.3ieimpact.org/evidence-hub/publications/impact-evaluations/impacts-novel-mhealth-platform-track-maternal-and
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Many of the studies in our sample contained more than one estimated treatment effect. 

We chose as many as could be matched to initial ex ante power calculations. Our final 

dataset consists of 47 estimated treatment effects from the 23 studies. 

What do the 3ie datasets look like? As much as possible, we want our artificial 

datasets to look like actual 3ie datasets. Three important data characteristics are sample 

size, number of clusters, and ICC values. FIGURE 3 reports histograms for all three 

characteristics for the 47 datasets associated with the estimated treatment effects from 

the 3ie projects.  

Based on the first two histograms in FIGURE 3, we create simulated datasets 

where total observations take one of two values – 3,000 and 10,500; and clusters take 

one of four values: 60, 100, 150, and 250. The respective values are indicated in the 

histograms by dashed, vertical red lines. Let 𝑁𝑁 represent the number of clusters, 𝑇𝑇 the 

number of subjects within a cluster, and let all the simulated datasets be balanced. Then 

the values above define four basic dataset configurations, 𝑁𝑁 × 𝑇𝑇 = (i) 60 × 50, (ii)100 ×

30, (iii)150 × 70, and (iv) 250 × 42, where the respective datasets have either 3,000 or 

10,500 total observations.  

Design of the Monte Carlo Experiments. Our experiments specify the following 

linear data generating process (DGP): 

(5) 𝑦𝑦𝑎𝑎𝑀𝑀 = 1 + 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 × 𝑇𝑇𝑎𝑎𝑀𝑀 + 𝜀𝜀𝑎𝑎𝑀𝑀, 

where 𝑦𝑦𝑎𝑎𝑀𝑀 is the output of interest, 𝑇𝑇𝑎𝑎𝑀𝑀 is a binary treatment variable, 𝜺𝜺~𝑁𝑁(𝟎𝟎, 𝜴𝜴), and the 

subscripts 𝑛𝑛 and 𝑡𝑡 represent the individual cluster and subject indicators, 𝑛𝑛 = 1,2, … 𝑁𝑁, 

𝑡𝑡 = 1,2, … , 𝑇𝑇. Half of the clusters receive treatment, and everybody in a treated cluster 

receives the treatment. This fully specifies the (𝑁𝑁𝑇𝑇 × 2) data matrix 𝑿𝑿 = [𝒊𝒊 𝑻𝑻], where 𝒊𝒊 

is a column vector of ones and 𝑻𝑻 is a column of half ones and half zeroes . 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 is the 

population treatment effect. We set the value of 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 such that the associated effect 



12 
 

size corresponds to a specific power value, 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = (10%, 20%, 30%, … ,80%, 90%). To 

do that, we need to specify 𝜴𝜴 .  

 The bottom panel of FIGURE 3 reports a histogram of ICC values for the 3ie 

datasets. Based on this, we select three ICC values to be representative of the full sample: 

𝜌𝜌 = 0.050, 0.150, and 0.250. The respective error variance-covariance matrices (VCMs) 

are composed of 𝑁𝑁2 (𝑇𝑇 × 𝑇𝑇) blocks as configured below, with all the blocks on the main 

diagonal consisting of 1’s and 𝜌𝜌′𝑠𝑠, and 0’s everywhere else: 

(6)  𝜴𝜴𝑁𝑁𝑁𝑁×𝑁𝑁𝑁𝑁       = 𝜎𝜎2 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1

⋯
0 0 ⋯ 0
0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ 0
0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⋯

1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 

The three ICC values (𝜌𝜌) in combination with the four basic dataset configurations 

(𝑁𝑁 × 𝑇𝑇) generate twelve unique error VCMs. Without loss of generality, we let 𝜎𝜎2 = 1.5  

 To be consistent with the 3ie studies in our sample, the Monte Carlo experiments 

estimate the treatment effect using OLS with cluster-robust standard errors. The 

associated VCM for the estimated coefficients in Equation (5) is given by: 

(7) 𝑉𝑉𝑉𝑉𝑃𝑃�𝜷𝜷�� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏 𝑿𝑿′𝜴𝜴𝑿𝑿(𝑿𝑿′𝑿𝑿)−𝟏𝟏 , 

where the second element in the 2 × 1 vector 𝜷𝜷� is 𝐸𝐸𝐸𝐸� . Note that everything on the right-

hand-side is known. Thus, 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� , which is the square root of the lower right element 

of 𝑉𝑉𝑉𝑉𝑃𝑃�𝜷𝜷��, is easily solved as a function of population parameters and known constants. 

 Given 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� , it is straightforward to solve 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 for any given 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 value: 

(8) 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = �𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� − 𝑡𝑡1−𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃� × 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� . 

 
5 𝜎𝜎2 is a nuisance parameter because it merely scales the size of 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 . 
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As a result, we have everything we need to generate artificial datasets following the DGP 

in Equation (5). The 9 different 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 values, 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = (10%, 20%, 30%, … ,80%, 90%), 

in combination with 12 dataset configurations/error variance covariances (𝑁𝑁 × 𝑇𝑇, 𝜴𝜴), 

produce a total of 108 experiments. Each experiment consisted of 1000 replications.  

V. Results of Monte Carlo Experiments Assessing the Performance of the SE-ES  
    Estimator 
 
Explanation of the tables. The results of the Monte Carlo experiments are reported in 

TABLES 1 and 2. TABLE 1 reports the benchmark results for OLS assuming no intra-

cluster correlation (𝜌𝜌 = 0). The estimated OLS standard errors are robust for 

heterokedasticity. TABLE 2 does the same for the clustered data, 𝜌𝜌 = 0.050, 0.125, 0.250, 

where the estimated standard errors are robust for both heteroskedasticity and intra-

cluster correlation.  

TABLE 1. For each experiment, we report the following summary statistics for the 

sample of 1000 ex post power estimates: (i) the mean, (ii) the lower (“p(0.05)”) and (iii) 

upper bounds (“p(0.95)”) of a 90% sample interval, and (iv) the standard deviation. The 

table is organized in nine panels, corresponding to the nine 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 values. The rows of 

each panel report estimates for sample sizes of 3,000 and 10,500, respectively.   

The values in the table are easily misinterpreted. For example, when 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 =

10% and Sample Size = 3,000, the 90-percent sample interval of estimated power values 

ranges from 9.7% to 10.3%. When Sample Size increases to 10,500, the associated 

interval narrows to 9.9% and 10.1%.  Note that Power is held constant at 10% in both 

cases. To maintain Power as the sample size increases, the associated effect size, 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃, 

is reduced. Thus, the narrower range of estimated power values is not due to the fact that 

𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  is smaller for the larger sample. This has already been accommodated by the 
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smaller 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 value. Instead, it is due to the fact that 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)��  is a more precise 

estimator of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� . 

Overall, the values in the table indicate a high level of reliability. The SE-ES ex post 

power estimates are unbiased at all levels of Power. The 90-percent sample intervals are 

all relatively narrow. When sample size = 3,000, the intervals all lie within 2 percentage 

points of their true Power values. For example, for Power  = 50%, the 90-percent sample 

interval is (48.4%, 52.0%). When sample size = 10,500, the intervals all lie within 1 

percentage point of their true Power values. For true Power = 50%, the corresponding 

sample interval is (49.1%, 50.9%).  

TABLE 2. TABLE 2 reports results for the more representative case with 

clustering. These results are directly applicable to the 3ie-funded studies, as all 23 

studies/47 treatment effects were estimated using OLS with cluster robust standard 

errors.  As before, the table is organized in nine panels for the different true Power  values. 

The first six rows of each panel report estimates for sample sizes of 3000, and the next 

six rows report estimates for samples sizes of 10,500. Within each set of six rows, the first 

three rows report results for the smaller number of clusters (60 versus 100, and 150 

versus 250, respectively). Thus, within each set of six rows, one can see the effect of 

increasing the number of clusters while holding constant the total number of 

observations. And within each set of 3 rows, one can see the effect of increasing ICC 

holding constant sample size and the number of clusters. 

As noted above, one must be careful to avoid misinterpretation. For example, 

when 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 10%, 𝑁𝑁 = 60, and 𝑇𝑇 = 50, there is hardly any change in the performance 

of the SE-ES estimator for different values of 𝜌𝜌 (≡ ICC). This does not mean that ex post 

power is unaffected by changes in 𝜌𝜌: As 𝜌𝜌 increases, 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 is adjusted to compensate 

for the fact that 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  is larger. Rather, differences in sample intervals are related to 
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the precision of the standard error estimates. Thus, the narrower ranges of the 90-

percent sample intervals one observes as the number of clusters increases is due to the 

fact that 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)��  is a more precise estimator of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  when there are more clusters. 

We make two general observations from TABLE 2. First, the SE-ES estimator is 

slightly biased upwards for smaller numbers of cluster. The bias is largest when true 

Power = 50%. When the number of clusters = 60, average estimated power is 

approximately 51.8%. This falls to approximately 50.5% when the number of clusters 

increases to 250. This is consistent with the fact that the conventional cluster robust 

estimator underestimates standard errors when the number of clusters is relatively small 

(Cameron, Gelbach, & Miller, 2008). 

The other observation relates to the sample intervals of the estimated power 

values. Here, performance is also worst for relatively small numbers of clusters. For 

example, when the number of clusters = 60 and Power = 20%, the lower and upper 

bounds of the 90-percent interval of estimated power values are approximately 16% and 

27%. When Power = 50%, the corresponding values are 40% and 65%. And when Power 

= 80%, they are 68% and 92%. In contrast, when the number of clusters = 250, the 

corresponding intervals are: (Power = 20%) 18% to 23%; (Power = 50%) 45% to 57%; 

and (Power = 80%), 74% to 86%. 

Performance assessment. TABLES 1 and 2 make clear that the performance of the 

SE-ES estimator depends on the dataset and the estimator used for the standard error. 

When independence of observations describes the researchers’ dataset, so that 

conventional OLS with heteroskedasticity-robust standard errors is appropriate, the SE-

ES estimator performs very well. Across all Power values, estimates of ex post power are 

unbiased and very close to their true values.  
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When observations are clustered, performance of the SE-ES estimator declines, 

especially for relatively small numbers of clusters. This is a function of the well-known 

shortcomings of the conventional, cluster-robust estimator (Cameron, Gelbach, & Miller; 

2008; MacKinnon, 2019; Roodman, 2019). We focus on the clustered case because this is 

the estimator exclusively used by the studies in our 3ie sample. The question is whether 

the SE-ES estimator is sufficiently precise to be a useful estimator of ex post power for 

this sample. 

 In assessing the suitability of the SE-ES estimator, we note that most of the 3ie-

funded studies claimed to have 80% power in their funding applications. Therefore, we 

are most interested in the TABLE 2 results for true Power = 80%. With respect to bias, 

there is next to no bias in the associated experimental estimates. With respect to 

precision, the results are harder to assess. If we take the (𝑁𝑁 × 𝑇𝑇 = 60 × 50 = 3000) 

experiments as a worst or close to worst case scenario for the SE-ES estimator, the lower 

and upper bounds of the 90-percent sample interval are 68% and 92%. If we jump down 

to the bottom three rows of the panel, the corresponding values are 74% and 86%. 

Compared to the “observed power” simulations of FIGURE 2, these results demonstrate 

immense improvement. 

 Whether they are good enough to be a suitable estimator of ex post power is a 

subjective decision. Our judgment is that they are. Approximately 90% of the SE-ES 

power estimates lie within ±10 percentage points of 80%, the true power. As we 

illustrate below, for many purposes, this range is sufficient. What matters is not whether 

power is 70% or 80% or 90%, but that it is not 30% or 40% or 50%.  In judging the value-

added of ex post power estimates, we are mindful that ex ante power values are also 

estimates, based on educated guesses about sample characteristics from as-yet-unseen 

datasets.  Further, the formulae that transform those educated guesses to ex ante power 
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values are only approximations of 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)� . For all these reasons, we believe that the SE-

ES method provides a superior approach to measuring the true power of the 3ie 

estimates.6  

VI. Application One: Ex Post Versus Ex Ante Power 

Comparison of ex post versus ex ante power (averages). Our first application compares 

the SE-ES estimates of ex post power with the ex ante values reported in the funding 

applications. TABLE 3 reports side-by-side ex ante and ex post power values, along with 

planned and actual sample characteristics for number of clusters, ICC, and total 

observations, for each of the 47 estimated treatment effects. The last row reports the 

sample averages. 

 The average pre- and post-estimation values correspond quite closely. The 

average number of planned clusters is 151.8, compared to an average of actual clusters 

of 145.2. The pre-estimation average estimate of ICC is 0.123. Actual average ICC is 0.128. 

The average, planned sample size for the 3ie studies is 5,883, compared to an average, 

actual sample size of 5,991. And finally, the average, ex ante power across all 47 treatment 

effects is 80.8%, compared to an average, ex post power of 75.4%. Thus, based on 

averages, the SE-ES estimates of power after estimation correspond closely to the ex ante 

estimates submitted to 3ie.  

 Comparison of ex post versus ex ante power (individual estimates). The average 

values above mask a significant amount of heterogeneity at the individual level. FIGURE 

4 provides a closer look. The top panel of FIGURE 4 presents a histogram of the individual 

 
6 The simulations in TABLES 1 and 2 assume that the estimator correctly specifies the error VCM. But 
suppose it doesn’t? The APPENDIX reports simulation results when OLS with robust cluster standard errors 
is used with clustered data where the errors are cross-sectionally correlated. This violates the assumption 
of independence of clusters underlying the robust estimator of the error VCM. However, as the Appendix 
shows, this violation has little effect on the performance of the SE-ES power estimator. In fact, in a wide 
variety of Monte Carlo experiments that we conducted, we find that the impact of violating the assumption 
of independence of clusters is negligible. 
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ex post power estimates. While the average is close to 80%, the individual values range 

from a minimum of 20.7% to a maximum of 100%. The bottom panel of FIGURE 4 gives a 

somewhat different look. It compares the ex ante and ex post power estimates, ranked 

from lowest ex post power estimate to largest. Note that a few of the 3ie studies had ex 

ante estimates of power greater than 80% (cf. IDs 19, 20, and 22). 

 If we are willing to use the Monte Carlo experiments as a guide, we can determine 

whether the observed distribution of ex post power values in FIGURE 4 is consistent with 

all studies having a true power of 80%.  TABLE 2, Panel “True Power = 80%” reports 90% 

power intervals for the twelve data environments selected to be representative of the 3ie-

funded studies. These range from (68.0%, 91.5%) for (𝑁𝑁, 𝑇𝑇, 𝜌𝜌) = (60, 50, 0.050) to 

(74.6%, 85.6%) for (𝑁𝑁, 𝑇𝑇, 𝜌𝜌) = (250, 42, 0.250).  

If true 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 =  80%, we would generously expect 5% of the ex post power 

estimates in TABLE 3 to be less than 65%, or approximately 3 out of the 47. In fact, there 

are 12 ex post power estimates less than 65% (25.5%), for an “excess” of 9 (out of 47). 

While this is only a back-of-the-envelope calculation, it does suggest that there is a 

significant minority of studies that fail to achieve planned power in their final estimating 

equations. 

Determinants of individual differences between ex post and ex ante power. Given 

that ex ante power calculations are a function of effect sizes and sample characteristics, 

and given that our power calculations use the same effect sizes, any differences between 

ex post and ex ante power should be due to difference between planned and actual 

sample characteristics. The supplementary materials from 3ie provide information on 

planned total observations, planned number of clusters, and assumed ICC values.  

FIGURE 5 compares these with actual values taken from the final estimating 

equations. We report differences in units of percent for total observations and clusters, 
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and straight differences for ICC. In most cases, planned and actual values are reasonably 

close. However, in a few cases the differences are quite large. For example, one of the 

studies had planned to have 4000 observations, but the final estimating equation only 

used 831 observations. Another study had planned to have 60 clusters, but the final 

dataset only had 20.  A third study very conservatively planned for an ICC of 0.500, but 

the final dataset was characterized by a much lower level of intracluster correlation 

(0.060).  

TABLE 4 investigates the extent to which these sample characteristics can explain 

the differences between ex post and ex ante power. We estimate four specifications 

where the dependent variable is the difference between ex post and ex ante power, and 

the explanatory variables consist of various combinations of differences in total 

observations (in percent), clusters (in percent), and ICC (straight difference). 

Specification (1) is the baseline specification consisting of the three difference variables. 

Specification (2) adds quadratic terms for all three variables to the baseline specification. 

Specification (3) adds interaction terms to the baseline specification. And Specification 

(4) adds both quadratic and interactions terms to the baseline specification. 

From the baseline specification in (1), we estimate that a 10 percent increase in 

the difference between actual and planned sample size (ΔObs), holding constant the 

difference in clusters and ICC, increases the difference between ex post and ex ante power 

(ΔPower) by 1.4 percentage points. In contrast, a 10 percent increase in the number of 

actual clusters over planned clusters (ΔClust), holding constant the difference in total 

observations and ICC, is estimated to increase ΔPower by 2.6 percentage points. And a 

0.10 increase in ICC, holding the other difference variables constant, reduces ΔPower by 

3.5 percentage points. Of these, only the estimate for the difference in clusters is 
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significant at the 5 percent level. This basic specification “explains” approximately 39% 

of the variance in ΔPower. 

The other specifications add different combinations of quadratic and interaction 

terms. The “best” specification according to the BIC is Specification (2), which consists of 

linear and quadratic terms of the three difference variables, but no interaction terms. The 

inclusion of the quadratic terms is further supported by the fact that they are jointly 

significant at the 5 percent level.  This expanded specification “explains” over half of the 

observed differences between ex post and ex ante power (58%).  

TABLE 4 highlights the importance of being able to correctly predict the sample 

characteristics of the final dataset when planning the research design. The histograms 

from FIGURE 5 illustrate just how difficult this is. Taken together, these results 

underscore the importance of being judiciously sceptical of ex ante calculations of power. 

They also underscore the potential benefit of estimating ex post power. 

VII. Application Two: Using ex post power to interpret estimates from individual studies 

Perhaps the most practical application of the SE-ES method is in providing guidance when 

interpreting individual estimated effects after estimation. This section provides three 

examples to illustrate this. The first two examples illustrate how ex post power estimates 

can inform interpretation of statistically insignificant estimates. The last example shows 

how ex post power can be used to assess significant estimates. 

Insignificant with low power. The first example comes from ID =13. This project 

assessed the impact of a government family planning program. Ex ante power calculation 

focused on a binary outcome variable indicating utilization of services. Treatment 

consisted of a variety of outreach activities in selected communities to encourage people 

to use family planning services. The treatment variable was also a binary variable that 

indicated that the subject resided in a community receiving treatment. The ex ante power 
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calculations assumed an effect size of 0.060 to correspond with 80% statistical power 

(𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 = 0.060). The actual estimate reported in the final study was 0.077 with an 

estimated (cluster robust) standard error of 0.051. Despite being larger than the assumed 

effect size, the estimated treatment effect was not statistically different from zero at the 

5% level.  

A common interpretation (misinterpretation) of statistical insignificance would 

see this result as evidence that the outreach activities were ineffective in achieving their 

objective of getting people to access family planning services. The problem with this 

interpretation is that it ignores the power of the respective estimating equation. The SE-

ES method estimates that this equation only had 20.7% power for an effect size of 0.06. 

In other words, the researchers only had a one in five probability of obtaining a significant 

estimate given their assumed treatment effect.  

This example shows how ex post power can address the question, Is an 

insignificant estimate due to a negligible effect or insufficient power? Assuming 0.06 was 

the true effect, there was little likelihood of the researchers obtaining a statistically 

significant estimate. In this particular case, the problem was not sample design. The 

problem was that the actual number of clusters (63) fell far short of what was planned 

(118). The small number of clusters reduced precision, and this in turn reduced power. 

Knowledge of ex post power helps one guard against misinterpretation of statistically 

insignificant estimates. 

Insignificant with high power. A second example comes from ID =1. This program 

funded youths to start their own businesses. The outcome variable measured 

respondents’ assets.  The treatment variable was binary and consisted of assignment to a 

group eligible to receive funding. Estimation was based on a difference-in-differences 

(DID) specification using OLS.  
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The authors’ based their calculation of 80% ex ante power assuming a Cohen’s d 

value of 0.2,  

(9) 𝑑𝑑 =    
|𝑎𝑎�𝑇𝑇−𝑎𝑎�𝐶𝐶|
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑀𝑀𝑝𝑝

 , 

where 𝑦𝑦�𝑁𝑁 and 𝑦𝑦𝐶𝐶  are means of the outcome variable for the treatment and control groups, 

and 𝐸𝐸𝑝𝑝𝑃𝑃𝑃𝑃𝑎𝑎𝑒𝑒𝑝𝑝 is the pooled sample standard deviation of the outcome variable. The latter is 

equivalent to the root mean squared error (RMSE) in a simple regression with a dummy 

variable for treatment. Cohen’s d = 0.2 is widely taken as representing a “small effect” 

(Cohen, 1992).7 Using the data provided by 3ie, we estimated a RMSE = 𝐸𝐸𝑝𝑝𝑃𝑃𝑃𝑃𝑎𝑎𝑒𝑒𝑝𝑝= 5.889, 

which implies an estimated treatment effect in the OLS-DID specification of 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 =

1.1778. In the final report, the authors reported an estimated treatment effect of 0.455 

with a standard error of 0.385 and a p-value of 0.238. Accordingly, we estimate the power 

of the final estimated equation to be 86.3%. 

 This is the opposite case of the previous example. Here we have a statistically 

insignificant estimate with relatively high power. If the true effect had been equal to or 

greater than 1.1778 (equating to a “small effect” by Cohen’s metric), the probability of 

obtaining a significant estimate would have been equal to or greater than 86.3%. The fact 

that the estimated treatment effect proved to be insignificant suggests that the true effect 

is less than 1.1778. Thus, knowing that the final estimating equation had high power 

allows one to identify negligible effect as the likely cause of the statistical insignificance.  

 Significant with low power. Our last case illustrates how ex post power can be used 

to assist interpretation of statistically significant estimates. Unfortunately, our sample of 

3ie-funded studies did not produce an example where the estimated effect was 

 
7 While it quite common to assume that Cohen’s d = 0.2 is “small”, this depends on the particular problem 
being examined. An intervention that increased the dependent variable by 0.2 standard deviations could, 
in some circumstances, be large; even unreasonably large. We thank David McKenzie for pointing this out. 
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statistically significant with low power. However, study ID = 18 is close enough to 

illustrate the point.  This study evaluated a program designed to reduce conflict between 

majority and minority ethnic group youths. The intervention consisted of a 6-8 week, 

extra-curricular course administered in public schools. Students were randomly assigned 

to treatment and control groups. The outcome variable was a Likert scale response 

variable that measured trust in new people they meet on a scale from 1 (do not trust at 

all) to 4 (trust completely). 

 Similar to the previous example, the authors based their power calculation of 80% 

assuming a Cohen’s d value of 0.24. This converts to an effect size in units of the original 

variable of 0.191. The authors used a DID specification in an OLS regression equation and 

estimated a treatment effect of 0.273 with a standard error of 0.101 and a “marginally 

significant” p-value of 0.051. Based on the SE-ES method, we estimate that this equation 

had power of 37.0%. 

 In other words, if the population effect size had been 0.191, there is less than a 

40% chance that this study would have produced a significant estimate. In fact, the 3ie-

funded study reported an estimate of 0.273 with a p-value of 0.051. One interpretation of 

these results is that the effect was equal to 0.191 and the authors were relatively lucky to 

obtain a marginally significant estimate. A second possibility is that the true effect size 

was larger than 0.191 which is why the study estimated the larger estimate.  

However, a third possibility is that this is a case of Gelman & Carlin’s (2014) Type 

M error. Obtaining a marginally significant estimate when one would otherwise not 

expect one is an indicator that the estimate may an outlier in terms of both statistical 
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significance and magnitude. Low, ex post power can be a reason to downgrade one’s 

confidence in an estimated result.8 

VIII. Conclusion 

While it is generally recognized that researchers should do power calculations before 

estimation (“ex ante power”), to date there is no generally accepted method for 

calculating power after estimation (“ex post power”). A method to calculate ex post 

power would be useful for multiple reasons. For one, it would be enlightening to know 

whether ex ante power calculations were generally reliable. For another, knowing the 

power of an estimating equation could help one interpret the results. For example, it 

could help one to know whether an insignificant estimate was due to the underlying effect 

being small, or because the study was underpowered. 

This study introduces a simple method for calculating ex post power that we call 

the SE-ES method. We then conduct a series of Monte Carlo experiments to assess its 

performance. We find that performance depends on both the estimator being used (for 

example, whether one uses heteroskedasticity-robust estimates of the standard error or 

cluster-robust estimates) and the characteristics of the data. We customize the design of 

the experiments so that the simulations produce artificial datasets that resemble actual 

data from studies funded by the International Initiative for Impact Evaluation (3ie). After 

determining that the SE-ES method performs adequately, we then apply it to the 3ie 

studies. 

We find an average ex post power of 75.4%, not far from the 80% commonly 

claimed in the 3ie funding applications. However, we find more estimates of low power 

than would be expected if all studies had 80% true power. Investigation using regression 

 
8 Kaestner (2021) is another example of low power/large, significant estimate that causes the author to 
lose confidence in the estimated effect.   
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analysis reveals that most of the differences between ex post and ex ante power (58%) 

can be explained by differences in planned and actual total observations, number of 

clusters, and the degree of intracluster correlation. 

 A particularly useful application of ex post power estimation is that it can aid in 

the interpretation of both insignificant and significant estimates. We provide three 

examples from the 3ie studies: (i) insignificance with low power, (ii) insignificance with 

high power, and (iii) significance with low power. The first two examples illustrate how 

one can use the associated power estimate to help determine if statistical insignificance 

is caused by a negligible effect size or insufficient power. The third example illustrates 

how ex post power can also be useful when the estimated effect is significant because it 

can alert the reader to the possibility of Type M error (Gelman & Carlin, 2014). 

 Limitations. As demonstrated in TABLES 1 and 2, the performance of the SE-ES 

method depends crucially on the nature of the data and the type of estimator used for 

estimation. One must be careful in applying the results of the Monte Carlo experiments to 

settings that are different from those in the experiments. For example, the third example 

was drawn from a 3ie-funded study in which OLS estimation was applied to a linear 

equation with a dependent variable taking integer values 1 to 4. Strictly speaking, OLS is 

not the appropriate estimator to apply in this situation because the dependent variable 

is bounded by 1 and 4. It is unclear how well heteroskedasticity-robust standard errors 

accommodate this feature of the data. Accordingly, it is unclear how well the simulation 

results in TABLE 2 extend to this study. When considering data environments and 

estimators different from those studied here, one should appropriately customize the 

Monte Carlo simulations to the data at hand. To facilitate that, the code used to generate 
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TABLES 1 and 2 (and all the other results in this paper) are publicly available and posted 

online.9 

 Possible directions for future research. One possible direction for future research 

is to apply the SE-ES method to funding applications from other organizations to see 

whether the results we find for 3ie are externally valid. Another direction for future 

research is to assess the SE-ES method for other types of datasets and estimators. As we 

demonstrate with TABLES 1 and 2, performance can vary greatly depending on the 

nature of the data and the properties of the estimators being used. Would the SE-ES 

method be sufficiently precise to be useful when applied to IV estimation, structural 

equation models (SEM), or time series applications?  

Finally, recent research indicates that much social science research is severely 

underpowered. Ioannidis, Stanley, & Doucouliagos (2017) report that the median 

statistical power in economics research is 18%, Using a similar methodology, Arel-

Bundock et al. (2022) find that median power in the empirical political science literature 

is approximately 10%. Both methods use meta-analysis to fix the effect size for their ex 

post power calculations. An alternative approach would be to work within homogeneous 

literatures for which one could posit meaningful effect sizes. Then use the methods of this 

paper to determine whether the respective literatures have sufficient power to identify 

those effect sizes.  It would be of interest to know whether this alternative approach 

yielded the same conclusions about power as the meta-analytic studies. It is hoped that 

the present study will stimulate research in these, and other, directions. 

  

 
9 See here: https://osf.io/frwx2/?view_only=5a0a8d2ecc2e4f6eb3be8097152f6712. 
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TABLE 1 
Performance Assessment of the SE-ES Ex-Post Power Estimator (OLS) 

 

True Power = 10% 

Sample Size Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

3,000 0 0.100 0.098 0.103 0.002 

10,500 0 0.100 0.099 0.101 0.001 

True Power = 20% 

3,000 0 0.200 0.194 0.207 0.004 

10,500 0 0.200 0.196 0.204 0.002 

True Power = 30% 

3,000 0 0.301 0.290 0.311 0.006 

10,500 0 0.300 0.294 0.306 0.004 

True Power = 40% 

3,000 0 0.400 0.387 0.414 0.008 

10,500 0 0.400 0.393 0.407 0.005 

True Power = 50% 

3,000 0 0.501 0.484 0.520 0.011 

10,500 0 0.500 0.491 0.509 0.005 

True Power = 60% 

3,000 0 0.601 0.583 0.619 0.011 

10,500 0 0.600 0.590 0.609 0.006 

True Power = 70% 

3,000 0 0.700 0.681 0.719 0.011 

10,500 0 0.700 0.690 0.710 0.006 

True Power = 80% 

3,000 0 0.801 0.783 0.817 0.010 

10,500 0 0.800 0.791 0.809 0.005 

True Power = 90% 

3,000 0 0.900 0.888 0.911 0.007 

10,500 0 0.900 0.894 0.906 0.004 
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NOTE: The Monte Carlo experiments that produced these results are 
described in Section IV. The experiments for sample size = 3,000 used 
𝑁𝑁 × 𝑇𝑇 = 60 × 50, and the experiments for sample size = 10,500 used 𝑁𝑁 × 𝑇𝑇 =
150 × 70. Both sets of experiments set 𝜌𝜌 = 0. Each experiment consisted of 
1000 replications.  
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TABLE 2 
Performance Assessment of the SE-ES Ex-Post Power Estimator (OLS-Cluster) 

 

True Power = 10% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.103 0.086 0.125 0.012 

(60, 50) 0.150 0.103 0.087 0.126 0.012 

(60, 50) 0.250 0.103 0.087 0.124 0.012 

(100, 30) 0.050 0.102 0.089 0.117 0.009 

(100, 30) 0.150 0.102 0.089 0.118 0.009 

(100, 30) 0.250 0.102 0.088 0.118 0.009 

(150, 70) 0.050 0.101 0.090 0.114 0.007 

(150, 70) 0.150 0.101 0.090 0.114 0.007 

(150, 70) 0.250 0.101 0.090 0.114 0.007 

(250, 42) 0.050 0.100 0.092 0.110 0.005 

(250, 42) 0.150 0.101 0.092 0.109 0.005 

(250, 42) 0.250 0.101 0.092 0.110 0.005 

True Power = 20% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.208 0.164 0.265 0.033 

(60, 50) 0.150 0.208 0.164 0.268 0.032 

(60, 50) 0.250 0.208 0.163 0.267 0.032 

(100, 30) 0.050 0.206 0.171 0.251 0.026 

(100, 30) 0.150 0.206 0.170 0.251 0.026 

(100, 30) 0.250 0.206 0.170 0.251 0.025 

(150, 70) 0.050 0.204 0.175 0.237 0.019 

(150, 70) 0.150 0.204 0.175 0.235 0.019 

(150, 70) 0.250 0.204 0.174 0.236 0.019 

(250, 42) 0.050 0.202 0.180 0.228 0.015 

(250, 42) 0.150 0.202 0.180 0.227 0.015 

(250, 42) 0.250 0.202 0.180 0.227 0.015 
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True Power = 30% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.314 0.243 0.410 0.052 

(60, 50) 0.150 0.314 0.239 0.408 0.053 

(60, 50) 0.250 0.315 0.238 0.411 0.052 

(100, 30) 0.050 0.309 0.253 0.375 0.038 

(100, 30) 0.150 0.310 0.254 0.377 0.038 

(100, 30) 0.250 0.310 0.254 0.377 0.039 

(150, 70) 0.050 0.304 0.259 0.356 0.029 

(150, 70) 0.150 0.304 0.259 0.355 0.029 

(150, 70) 0.250 0.304 0.259 0.355 0.029 

(250, 42) 0.050 0.304 0.268 0.342 0.023 

(250, 42) 0.150 0.303 0.268 0.342 0.023 

(250, 42) 0.250 0.303 0.268 0.343 0.023 

True Power = 40% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.415 0.319 0.534 0.066 

(60, 50) 0.150 0.413 0.317 0.530 0.065 

(60, 50) 0.250 0.412 0.317 0.525 0.065 

(100, 30) 0.050 0.408 0.333 0.495 0.049 

(100, 30) 0.150 0.408 0.330 0.499 0.050 

(100, 30) 0.250 0.408 0.331 0.501 0.051 

(150, 70) 0.050 0.404 0.344 0.476 0.041 

(150, 70) 0.150 0.404 0.344 0.475 0.041 

(150, 70) 0.250 0.404 0.344 0.475 0.041 

(250, 42) 0.050 0.402 0.356 0.456 0.030 

(250, 42) 0.150 0.403 0.356 0.454 0.030 

(250, 42) 0.250 0.402 0.358 0.456 0.031 
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True Power = 50% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.518 0.404 0.652 0.076 

(60, 50) 0.150 0.517 0.399 0.650 0.076 

(60, 50) 0.250 0.517 0.396 0.646 0.075 

(100, 30) 0.050 0.510 0.428 0.602 0.055 

(100, 30) 0.150 0.510 0.423 0.606 0.055 

(100, 30) 0.250 0.510 0.422 0.604 0.055 

(150, 70) 0.050 0.508 0.440 0.585 0.046 

(150, 70) 0.150 0.508 0.437 0.584 0.046 

(150, 70) 0.250 0.508 0.436 0.587 0.046 

(250, 42) 0.050 0.505 0.450 0.564 0.035 

(250, 42) 0.150 0.505 0.453 0.567 0.035 

(250, 42) 0.250 0.506 0.451 0.566 0.035 

True Power = 60% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.613 0.481 0.758 0.083 

(60, 50) 0.150 0.614 0.489 0.762 0.082 

(60, 50) 0.250 0.615 0.487 0.754 0.082 

(100, 30) 0.050 0.606 0.510 0.718 0.062 

(100, 30) 0.150 0.606 0.509 0.712 0.061 

(100, 30) 0.250 0.606 0.510 0.710 0.060 

(150, 70) 0.050 0.606 0.527 0.692 0.050 

(150, 70) 0.150 0.606 0.526 0.689 0.050 

(150, 70) 0.250 0.606 0.529 0.688 0.049 

(250, 42) 0.050 0.604 0.546 0.667 0.037 

(250, 42) 0.150 0.604 0.545 0.667 0.037 

(250, 42) 0.250 0.604 0.543 0.669 0.038 
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True Power = 70% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.711 0.581 0.841 0.080 

(60, 50) 0.150 0.711 0.578 0.843 0.079 

(60, 50) 0.250 0.711 0.581 0.833 0.078 

(100, 30) 0.050 0.707 0.608 0.812 0.063 

(100, 30) 0.150 0.708 0.607 0.811 0.062 

(100, 30) 0.250 0.708 0.608 0.810 0.061 

(150, 70) 0.050 0.707 0.624 0.790 0.050 

(150, 70) 0.150 0.707 0.625 0.793 0.051 

(150, 70) 0.250 0.707 0.627 0.795 0.051 

(250, 42) 0.050 0.705 0.643 0.767 0.039 

(250, 42) 0.150 0.705 0.642 0.768 0.039 

(250, 42) 0.250 0.705 0.642 0.768 0.039 

True Power = 80% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.806 0.680 0.915 0.070 

(60, 50) 0.150 0.806 0.685 0.918 0.071 

(60, 50) 0.250 0.806 0.689 0.917 0.070 

(100, 30) 0.050 0.807 0.718 0.891 0.052 

(100, 30) 0.150 0.806 0.714 0.891 0.053 

(100, 30) 0.250 0.806 0.713 0.890 0.053 

(150, 70) 0.050 0.801 0.726 0.874 0.045 

(150, 70) 0.150 0.802 0.728 0.873 0.044 

(150, 70) 0.250 0.802 0.728 0.868 0.044 

(250, 42) 0.050 0.801 0.741 0.856 0.035 

(250, 42) 0.150 0.802 0.746 0.857 0.035 

(250, 42) 0.250 0.802 0.746 0.856 0.035 
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True Power = 90% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.903 0.806 0.973 0.051 

(60, 50) 0.150 0.902 0.810 0.972 0.050 

(60, 50) 0.250 0.901 0.809 0.972 0.050 

(100, 30) 0.050 0.902 0.829 0.959 0.039 

(100, 30) 0.150 0.902 0.832 0.959 0.039 

(100, 30) 0.250 0.902 0.834 0.958 0.039 

(150, 70) 0.050 0.900 0.843 0.952 0.034 

(150, 70) 0.150 0.901 0.841 0.952 0.033 

(150, 70) 0.250 0.901 0.843 0.951 0.033 

(250, 42) 0.050 0.901 0.854 0.940 0.026 

(250, 42) 0.150 0.901 0.857 0.940 0.026 

(250, 42) 0.250 0.901 0.858 0.939 0.025 
 

NOTE: The Monte Carlo experiments that produced these results are 
described in Section IV. Each experiment consisted of 1000 replications.  
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TABLE 3 
Comparison of Ex Post with Ex Ante Power and Sample Characteristics 

 

ID Power Observations Clusters ICC 
Ex Ante Ex Post Ex Ante Ex Post Ex Ante Ex Post Ex Ante Ex Post 

1 80.0% 84.0% 2,520 2,991 402 393 0.030 0.085 
1 80.0% 86.3% 2,520 3,431 402 393 0.030 0.205 
2 80.0% 100.0% 3,240 3,128 108 107 0.500 0.070 
2 80.0% 100.0% 3,240 2,853 108 107 0.500 0.060 
3 80.0% 75.0% 12,000 11,733 300 301 n.a 0.300 
3 80.0% 76.8% 12,000 11,733 300 301 n.a. 0.250 
4 80.0% 31.9% 2,808 2,834 236 234 n.a. 0.160 
4 80.0% 70.2% 2,808 2,839 236 234 n.a. 0.010 
5 80.0% 69.8% 7,200 6,085 80 120 0.031 0.144 
5 80.0% 78.1% 7,200 6,015 80 120 0.030 0.115 
6 80.0% 92.9% 4,606 4,158 102 101 0.023 0.145 
6 80.0% 99.5% 4,606 4,156 102 101 0.023 0.145 
7 80.0% 69.6% 2,717 2,483 90 94 0.070 0.165 
8 80.0% 51.8% 2,160 2,131 80 48 0.200 0.310 
8 80.0% 66.2% 2,160 2,131 80 48 0.200 0.350 
8 80.0% 75.1% 2,160 2,131 80 48 0.200 0.370 
9 80.0% 99.8% 16,880 16,827 62 66 0.103 0.050 

10 80.0% 68.0% 2,169 2,687 120 110 0.202 0.268 
10 80.0% 85.1% 2,169 2,679 120 110 0.202 0.255 
11 80.0% 63.8% 4,009 2,358 n.a. 62 n.a. 0.020 
11 80.0% 70.6% 4,009 2,358 n.a. 62 n.a. 0.050 
12 80.0% 87.4% 1,948 2,694 60 68 0.100 0.017 
12 80.0% 94.4% 1,948 2,694 60 68 0.100 0.044 
12 80.0% 100.0% 1,948 2,694 60 68 0.100 0.026 
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ID Power Observations Clusters ICC 
Ex Ante Ex Post Ex Ante Ex Post Ex Ante Ex Post Ex Ante Ex Post 

13 80.0% 20.7% 10,070 9,897 118 63 0.070 0.098 
14 80.0% 90.3% 4,378 4,017 300 246 n.a. 0.100 
14 80.0% 96.6% 4,378 4,191 300 246 n.a. 0.150 
15 80.0% 86.7% 2,601 2,519 80 154 0.100 0.080 
15 80.0% 88.6% 2,601 2,531 80 154 0.100 0.020 
15 80.0% 90.4% 2,601 2,522 80 154 0.100 0.160 
15 80.0% 92.1% 2,601 2,525 80 154 0.100 0.020 
16 80.0% 90.7% 2,065 1,875 100 105 0.060 0.030 
16 80.0% 92.9% 2,065 1,875 100 106 0.060 0.030 
16 80.0% 96.8% 2,065 1,875 100 105 0.060 0.030 
17 80.0% 43.9% 22,578 14,713 173 122 0.150 0.359 
17 80.0% 59.1% 22,578 14,713 173 122 0.150 0.245 
17 80.0% 63.8% 22,578 14,713 173 122 0.150 0.223 
18 80.0% 32.7% 1,800 1,676 60 20 0.250 0.140 
18 80.0% 37.0% 1,800 1,316 60 20 0.250 0.150 
19 90.0% 71.6% 10,333 12,881 120 157 0.150 0.060 
20 90.0% 36.0% 4,000 831 n.a. 216 0.010 0.055 
20 90.0% 100.0% 4,000 3,368 n.a. 216 0.010 0.020 
21 80.0% 68.0% 3,750 3,511 300 148 n.a. 0.180 
22 85.0% 92.6% 1,858 1,798 80 79 n.a. 0.001 
22 85.0% 94.1% 1,858 1,798 80 80 n.a. 0.001 
23 80.0% 42.1% 5,000 6,300 100 98 0.040 0.113 
23 80.0% 62.9% 5,000 6,300 100 98 0.040 0.057 

Average 80.9% 75.4% 5352.8 4756.8 140.1 135.1 0.125 0.126 
SOURCE: All variables other than Ex Post Power come from data supplied by 3ie. The Ex Post Power values are calculated using the SE-
ES method described in Section III. Effect sizes were taken from the respective studies ex ante power calculations included as part of 
their grant applications.
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TABLE 4 
Determinants of Differences Between Ex Post and Ex Ante Power Estimates 

 

Variables 
Estimates 

(1) (2) (3) (4) 

ΔObs 0.1375 
(0.1143) 

0.0067 
(0.1254) 

0.1046 
(0.1209) 

-0.0550 
(0.1893) 

ΔClust 0.2599*** 
(0.0670) 

0.4401*** 
(0.0726) 

0.1957* 
(0.0956) 

0.5046*** 
(0.1637) 

ΔICC -34.873* 
(17.414) 

21.530 
(24.491) 

-43.463** 
(17.188) 

-18.588 
(31.337) 

ΔObs_sq ---- -0.00388 
(0.00451) ---- -0.00482 

(0.01132) 

ΔClust_sq ---- -0.00444*** 
(0.00096) ---- -0.00515*** 

(0.00147) 

ΔICC_sq ---- 54.893 
(68.951) ---- 26.667 

(75.621) 

ΔObs × ΔClust ---- ---- -0.00842 
(0.00622) 

0.00551 
(0.01520) 

ΔObs × ΔICC ---- ---- -0.02678 
(1.19549) 

1.55974 
(1.05026) 

ΔClust × ΔICC ---- ---- -0.73456 
(0.64371) 

-0.66459 
(0.52057) 

N 34 34 34 34 

R2 0.373 0.578 0.408 0.601 

BIC 307.1 304.2 315.7 312.8 

Hypothesis Test: 
Squared Terms = 0 ---- F=4.36 

(p=0.012) ---- F=3.89 
(p=0.021) 

Hypothesis Test: 
Interaction Terms = 0 ---- ---- F= 0.53 

(p=0.664) 
F= 0.48 

(p=0.701) 
Hypothesis Test: 
Squared Terms + 

Interaction Terms = 0 
---- ---- ---- F= 2.29 

(p=0.068) 

 
NOTE: The dependent variable is ΔClust. Estimates are obtained from OLS regressions 
using robust cluster estimates of standard errors. Data for the regressions come from 
TABLE 3. Standard errors are reported in parentheses unless p-values are indicated. ***, 
**, and * indicate statistical significance at the 1 percent, 5 percent, and 10 percent 
levels.  
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FIGURE 1 
The Relationship Between Effect Size and Power 

 

A. Case One: 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� > 𝑡𝑡𝐸𝐸𝐸𝐸10 

 
 

𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  𝐸𝐸𝐸𝐸 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  𝑡𝑡𝐸𝐸𝐸𝐸  �𝑡𝑡𝜐𝜐,1−𝛼𝛼

2� − 𝑡𝑡𝐸𝐸𝐸𝐸� 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 
2 4 3 1.33 0.67 0.747 0.253 

 

B. Case Two: 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� = 𝑡𝑡𝐸𝐸𝐸𝐸 

 
 

𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  𝐸𝐸𝐸𝐸 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  𝑡𝑡𝐸𝐸𝐸𝐸  �𝑡𝑡𝜐𝜐,1−𝛼𝛼

2� − 𝑡𝑡𝐸𝐸𝐸𝐸� 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 
2 4 2 2 0 0.500 0.500 

 

 C. Case Three: 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2� < 𝑡𝑡𝐸𝐸𝐸𝐸 

 
 

𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  𝐸𝐸𝐸𝐸 𝑠𝑠. 𝑒𝑒. (𝐸𝐸𝐸𝐸)�  𝑡𝑡𝐸𝐸𝐸𝐸  �𝑡𝑡𝜐𝜐,1−𝛼𝛼

2� − 𝑡𝑡𝐸𝐸𝐸𝐸� 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃 
2 4 1.5 2.67 -0.67 0.253 0.747 

 
10 All three cases set 𝛼𝛼 = 0.05 and 𝜐𝜐 = 50. 

𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  𝑡𝑡𝐸𝐸𝐸𝐸 

𝑡𝑡𝐸𝐸𝐸𝐸 = 𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  

 

0 

𝑡𝑡𝜐𝜐,1−𝛼𝛼
2�  𝑡𝑡𝐸𝐸𝐸𝐸 0 

0 
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FIGURE 2 
Distribution of Observed Power for Different True Power Values 

 

CASE ONE: True Power = 50% 

 

 

CASE TWO: True Power = 20% 

 

 

CASE THREE: True Power = 80% 
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NOTE: The data generating processes used to produce the three histograms above are 
given below: 

• 50%: Y = 1000+ 3.92*Treatment + rnorm(10000, 0, sd=100)  
• 20%: Y = 1000+ 2.238*Treatment + rnorm(10000, 0, sd=100) 
• 80%: Y = 1000+ 5.6*Treatment + rnorm(10000, 0, sd=100) 

where Treatment is a binary variable consisting of half 1s and half 0s, and rnorm(10000, 
0, sd=100) produces a vector of 10,000 realizations from a normal distribution having 
mean 0 and standard deviation 100. 
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FIGURE 3 
Data Characteristics of the 3ie Samples 

 

A. Total Observations 

 

B. Clusters 

 

C. ICC 
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FIGURE 4 
Distribution of Ex Post Power Estimates 

 

A. Histogram of Ex Post Power Estimates 

 
 

B. Comparison of Ex Ante and Ex Post Power Estimates 
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FIGURE 5 
Comparison of Planned and Actual Sample Characteristics 

 
A. Observations (percent difference) 

 
 

B. Clusters (percent difference) 

 
 

C. ICC (difference) 
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APPENDIX A 
Performance Assessment of the SE-ES Ex-Post Power Estimator (OLS-Cluster)  

with Cross-sectional Correlation 
 

True Power = 10% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.103 0.086 0.125 0.012 

(60, 50) 0.150 0.104 0.086 0.125 0.012 

(60, 50) 0.250 0.104 0.086 0.125 0.012 

(100, 30) 0.050 0.102 0.089 0.117 0.009 

(100, 30) 0.150 0.102 0.089 0.117 0.009 

(100, 30) 0.250 0.102 0.089 0.117 0.009 

(150, 70) 0.050 0.101 0.090 0.113 0.007 

(150, 70) 0.150 0.100 0.098 0.103 0.002 

(150, 70) 0.250 0.101 0.090 0.113 0.007 

(250, 42) 0.050 0.100 0.092 0.109 0.005 

(250, 42) 0.150 0.100 0.093 0.110 0.005 

(250, 42) 0.250 0.100 0.092 0.110 0.005 

True Power = 20% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.208 0.163 0.266 0.033 

(60, 50) 0.150 0.209 0.162 0.272 0.034 

(60, 50) 0.250 0.209 0.163 0.272 0.034 

(100, 30) 0.050 0.205 0.170 0.252 0.026 

(100, 30) 0.150 0.205 0.170 0.252 0.026 

(100, 30) 0.250 0.205 0.170 0.252 0.026 

(150, 70) 0.050 0.203 0.175 0.237 0.019 

(150, 70) 0.150 0.202 0.186 0.219 0.010 

(150, 70) 0.250 0.203 0.175 0.236 0.019 

(250, 42) 0.050 0.202 0.180 0.228 0.015 

(250, 42) 0.150 0.202 0.181 0.228 0.015 

(250, 42) 0.250 0.202 0.180 0.228 0.015 
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True Power = 30% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.314 0.242 0.410 0.052 

(60, 50) 0.150 0.314 0.242 0.406 0.051 

(60, 50) 0.250 0.314 0.242 0.407 0.051 

(100, 30) 0.050 0.308 0.254 0.375 0.038 

(100, 30) 0.150 0.308 0.254 0.375 0.038 

(100, 30) 0.250 0.308 0.254 0.375 0.038 

(150, 70) 0.050 0.306 0.259 0.358 0.030 

(150, 70) 0.150 0.303 0.274 0.336 0.019 

(150, 70) 0.250 0.305 0.259 0.359 0.030 

(250, 42) 0.050 0.303 0.269 0.342 0.023 

(250, 42) 0.150 0.303 0.268 0.341 0.023 

(250, 42) 0.250 0.303 0.268 0.341 0.023 

True Power = 40% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.416 0.319 0.534 0.067 

(60, 50) 0.150 0.416 0.318 0.536 0.067 

(60, 50) 0.250 0.416 0.317 0.535 0.067 

(100, 30) 0.050 0.409 0.335 0.494 0.048 

(100, 30) 0.150 0.409 0.334 0.495 0.048 

(100, 30) 0.250 0.409 0.334 0.496 0.048 

(150, 70) 0.050 0.405 0.347 0.479 0.040 

(150, 70) 0.150 0.403 0.363 0.455 0.028 

(150, 70) 0.250 0.405 0.347 0.480 0.040 

(250, 42) 0.050 0.402 0.355 0.455 0.030 

(250, 42) 0.150 0.402 0.355 0.455 0.030 

(250, 42) 0.250 0.402 0.355 0.455 0.030 
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True Power = 50% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.516 0.402 0.644 0.074 

(60, 50) 0.150 0.516 0.403 0.644 0.074 

(60, 50) 0.250 0.516 0.404 0.646 0.074 

(100, 30) 0.050 0.510 0.423 0.603 0.055 

(100, 30) 0.150 0.510 0.423 0.602 0.055 

(100, 30) 0.250 0.510 0.422 0.603 0.055 

(150, 70) 0.050 0.508 0.437 0.586 0.046 

(150, 70) 0.150 0.506 0.454 0.563 0.034 

(150, 70) 0.250 0.508 0.438 0.585 0.046 

(250, 42) 0.050 0.503 0.449 0.561 0.035 

(250, 42) 0.150 0.503 0.449 0.562 0.035 

(250, 42) 0.250 0.503 0.449 0.562 0.035 

True Power = 60% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.612 0.478 0.758 0.083 

(60, 50) 0.150 0.612 0.479 0.758 0.083 

(60, 50) 0.250 0.612 0.480 0.758 0.083 

(100, 30) 0.050 0.607 0.513 0.715 0.061 

(100, 30) 0.150 0.607 0.512 0.715 0.061 

(100, 30) 0.250 0.607 0.512 0.716 0.061 

(150, 70) 0.050 0.606 0.525 0.693 0.050 

(150, 70) 0.150 0.605 0.543 0.672 0.038 

(150, 70) 0.250 0.606 0.526 0.693 0.050 

(250, 42) 0.050 0.603 0.547 0.667 0.037 

(250, 42) 0.150 0.603 0.547 0.666 0.037 

(250, 42) 0.250 0.603 0.547 0.666 0.037 
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True Power = 70% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.712 0.583 0.842 0.079 

(60, 50) 0.150 0.712 0.584 0.842 0.079 

(60, 50) 0.250 0.712 0.584 0.843 0.079 

(100, 30) 0.050 0.705 0.601 0.811 0.063 

(100, 30) 0.150 0.705 0.601 0.809 0.063 

(100, 30) 0.250 0.706 0.602 0.808 0.063 

(150, 70) 0.050 0.707 0.626 0.786 0.049 

(150, 70) 0.150 0.706 0.643 0.769 0.039 

(150, 70) 0.250 0.706 0.627 0.787 0.049 

(250, 42) 0.050 0.705 0.642 0.769 0.039 

(250, 42) 0.150 0.705 0.641 0.769 0.039 

(250, 42) 0.250 0.705 0.641 0.769 0.039 

True Power = 80% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.805 0.683 0.912 0.069 

(60, 50) 0.150 0.805 0.683 0.911 0.069 

(60, 50) 0.250 0.805 0.682 0.911 0.069 

(100, 30) 0.050 0.806 0.717 0.891 0.053 

(100, 30) 0.150 0.807 0.716 0.891 0.053 

(100, 30) 0.250 0.807 0.715 0.891 0.053 

(150, 70) 0.050 0.801 0.724 0.874 0.045 

(150, 70) 0.150 0.801 0.740 0.862 0.037 

(150, 70) 0.250 0.801 0.724 0.874 0.045 

(250, 42) 0.050 0.800 0.741 0.857 0.035 

(250, 42) 0.150 0.800 0.742 0.858 0.035 

(250, 42) 0.250 0.800 0.742 0.857 0.035 
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True Power = 90% 

Sample Rho (𝝆𝝆) Mean p(0.05) p(0.95) S.D. 

(60, 50) 0.050 0.903 0.812 0.974 0.052 

(60, 50) 0.150 0.903 0.811 0.974 0.052 

(60, 50) 0.250 0.903 0.811 0.974 0.052 

(100, 30) 0.050 0.902 0.832 0.958 0.039 

(100, 30) 0.150 0.902 0.834 0.958 0.039 

(100, 30) 0.250 0.902 0.834 0.957 0.039 

(150, 70) 0.050 0.900 0.839 0.949 0.033 

(150, 70) 0.150 0.901 0.850 0.943 0.028 

(150, 70) 0.250 0.900 0.839 0.949 0.033 

(250, 42) 0.050 0.900 0.854 0.939 0.026 

(250, 42) 0.150 0.900 0.854 0.939 0.026 

(250, 42) 0.250 0.900 0.854 0.939 0.026 
 

NOTE: The Monte Carlo experiments that produced these results are 
described in Section IV and are identical to those underlying TABLE 2 with 
one exception: The clusters are now characterized by cross-sectional 
correlation. ICC continues to be represented by three values, 𝜌𝜌 = 0.050, 0.150, 
and 0.250, but there is now a cross-sectional covariance term = 0.030, so that 
𝜴𝜴 is described as below.  
 

  𝜴𝜴𝑁𝑁𝑁𝑁×𝑁𝑁𝑁𝑁       = 𝜎𝜎2 ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�

1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1

� ⋯ 0.03 �

1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1

�

⋮ ⋱ ⋮

0.03 �

1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1

� ⋯ �

1 𝜌𝜌 ⋯ 𝜌𝜌
𝜌𝜌 1 ⋯ 𝜌𝜌

⋮ ⋮ ⋱ ⋮
𝜌𝜌 𝜌𝜌 ⋯ 1

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 

 


	Ex Post Power (WP 17-2022, Part 0).pdf
	Ex Post Power (WP 17-2022, Part 1).pdf
	 “Community advocacy forums and public service delivery in Uganda: Impact and the role of information, deliberation and administrative placement”
	 “Evaluation of secondary school teacher training under the School Sector Development Programme in Nepal”
	 “Impacts of supportive feedback and nonmonetary incentives on child immunisation in Ethiopia”
	 “Impacts of electronic case management systems on court congestion in the Philippines”
	 “Impacts of the Stimulate, Appreciate, Learn and Transfer community engagement approach to increase immunization coverage in Assam, India”
	 “Impacts of a novel mHealth platform to track maternal and child health in Udaipur, India”
	 “Impacts of engaging communities through traditional and religious leaders on vaccination coverage in Cross River State, Nigeria”


