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1.   Introduction  

Null hypothesis significance testing (NHST) is the most frequently used approach to statistical 

inference in quantitative research.  In NHST, a researcher selects an arbitrary alpha value, 

usually 0.05, then estimates a parameter and calculates the corresponding p-value. If the p-

value is less than or equal to the chosen alpha, the null hypothesis is rejected. If the p-value is 

greater than alpha, the researcher fails to reject the null, and the result is considered statistically 

inconclusive. As Bausell and Li (2002) note, statistical insignificance may have more to do 

with the statistical design of a study than the effect itself. Insignificant estimates are expected 

when the effect being estimated does not exist. Alternatively, they can also arise when a study 

has too little statistical power to detect that effect.1 The desire to distinguish between these two 

possibilities motivates the interest in developing ex post measures of statistical power.  

One approach for calculating ex post power that has been widely used, but also severely 

criticized, relies on the estimated parameter and standard error. This approach is commonly 

known as “observed power” or “post hoc power”. As Hoenig and Heisey (2001) demonstrate, 

post hoc power has a one-to-one, mathematical relationship with the p-value. As a result, it 

adds no new information beyond the already known p-value. Yuan and Maxwell (2005) 

demonstrate that as a measure of true power, post hoc power is generally biased and very 

imprecise.  

To address this deficiency, Brown, Lambert & Wojan (2019), henceforth BLW, 

propose a method for calculating ex post power that can be used to distinguish insignificance 

caused by lack of statistical power and insignificance caused by a null effect. BLW apply their 

method to an analysis of the economic impact of the Conservation Reserve Program (CRP) by 

Sullivan et al. (2004). Sullivan et al. (2004) tested whether agricultural programs designed to 

remove environmentally sensitive land from production led to decreased employment in farm-

                                                 
1 Statistical power is the probability of detecting an effect, if there is a true effect present to detect. 
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dependent counties. They found a statistically insignificant relationship between land reduction 

by the CRP and changes in employment. BLW wanted to determine whether this meant the 

CRP had no effect, or whether the Sullivan et al. (2004) study did not have sufficient power to 

detect a possible negative effect. To answer this question, BLW used a bootstrapping 

procedure. Before explaining this procedure, I first provide context by describing Sullivan et 

al.’s (2004) analysis of the CRP. 

 

2.			Sullivan	et	al.’s	(2004)	Analysis	of	The	CRP	

Endogenous selection poses a challenge in estimating the effect of CRP participation on 

employment growth. To address this challenge, Sullivan et al. (2004) used a quasi-experimental, 

matched pair protocol to compare individual high-CRP counties with similar low-CRP counties. 

High-CRP counties were those counties that, on average, enrolled a higher percentage of their 

eligible land in CRP than other types of farms. Conversely, low-CRP counties enrolled a lower 

percentage of their eligible land in CRP than other types of farms. 

 Sullivan et al. (2004) reported CRP estimates for several models, but complete results 

were only reported for the long-run local employment growth model. BLW selected this model 

to replicate and use as a benchmark for their power analysis. In the Sullivan et al. (2004) study, 

the difference in employment growth over the period 1985 and 2000 between high-CRP 

(HCRP) and low-CRP (LCRP) counties was estimated using ordinary least squares (OLS) with 

the following regression specification:  

where 𝑖 indexes a matched pair; CRP payments to income ratio is the treatment variable; 𝐵𝑒𝑡𝑎 

measures the true (unobserved) treatment effect; 𝑿𝒊  is a 1 𝑘  matrix of matched pair 

 
𝑦  ≡ ln  

,

,
 ln ,

,
 

= 𝐵𝑒𝑡𝑎 𝐶𝑅𝑃 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑖𝑛𝑐𝑜𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 𝑿𝒊𝜷 𝜀      

(1) 
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differences on k control variables consisting of local socioeconomic and agriculture 

characteristics, and 𝜷 is a 𝑘 1 vector of coefficients. ε is assumed to be an independently and 

identically distributed random error term with mean zero and constant variance. Sullivan et al. 

(2005) reported an estimate of 𝐵𝑒𝑡𝑎 equal to 0.007, with a standard error of 0.003, t-statistic 

of 1.945, and p-value equal to 0.054 (and thus insignificant at the 0.05 level). The statistical 

insignificance of the estimated treatment effect did not allow the researchers to reach a 

conclusion regarding a possible adverse employment effect of the CRP program. This is the 

context in which BLW applied their ex post bootstrapping procedure. 

 

3.			BLW’s	Ex	Post	Bootstrapping	Method		

Statistical power measures the probability of obtaining a statistically significant estimate 

conditional on a specific, true effect size. Statistical power will be greater for larger effect sizes 

than smaller ones. As their starting point, BLW identified the largest employment loss that 

would still provide a benefit-cost justification for the Conservation Reserve Program (CRP).  

They determined that any negative employment effects less than 0.27 in absolute value was 

sufficient to justify the CRP. Accordingly, they wanted to measure the power of the Sullivan 

et al. (2004) study to obtain a statistically significant effect given a value for 𝐵𝑒𝑡𝑎 0.027. 

In addition, they also investigated statistical power associated with other effect sizes; namely, 

-0.015, -0.010, -0.005, and -0.001. The latter value was chosen as corresponding to the 

legislation’s requirement to identify any negative employment effect associated with the 

program.  

BLW’s procedure involved sequentially inserting 𝐵𝑒𝑡𝑎 values of -0.027, -0.015, -0.010, 

-0.005, and -0.001 in the estimation framework of Sullivan et al. (2004) to determine their ex 

post power. BLW’s method uses Monte Carlo simulations and consists of several steps. It starts 

by specifying the data-generating process (DGP) for the simulated datasets.  Using Sullivan et 
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al.’s (2004) sample data and regression specification of Equation (1), BLW fix the coefficient 

vector for the control variables at the values estimated by Sullivan et al. (2004). The respective 

treatment effect for the Monte Carlo experiments, 𝐵𝑒𝑡𝑎 , is then used to construct new values 

of the dependent variable. These new values are combined with the original, resampled 

explanatory variables to produce a new estimate of the treatment effect. This process is repeated 

multiple times. The percentage of estimated treatment effects that are statistically significant 

provides an estimate of the power of the original estimating equation. BLW calculate the ex 

post power associated with different possible treatment effects, 𝐵𝑒𝑡𝑎

 0.027, 0.015, 0.010, 0.005, 0.001 . 

 In their experiments, BLW not only vary the size of the treatment effect, 𝐵𝑒𝑡𝑎 , they 

also construct simulated datasets with different numbers of observations. So in addition to 

replicating the size of the original dataset of 190 observations, they construct simulated samples 

of 100, 150, 200, 250, and 350 observations. This leads to a total of 30 experiments, one for 

each combination of effect size 𝐵𝑒𝑡𝑎   0.027, 0.015, 0.010, 0.005, 0.001  and 

sample size (100, 150, 190, 200, 250, 350).  

FIGURE 1 provides more detail about BLW’s method. The first step consists of 

deciding the 𝐵𝑒𝑡𝑎 , 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒  combination to be used for the given experiment. For 

example, 𝐵𝑒𝑡𝑎  might be set equal to 0.015 and sample size at 100 observations. BLW 

then construct individual observations of a new, simulated dataset by randomly selecting rows 

of data from the original dataset to generate new values of the dependent variable.  

For example, to construct the first observation of the new dataset, the following items 

are selected from row 32 (a randomly selected row) of Sullivan et al.’s (2004) original data: (i) 

CRP32; (ii) the 32nd row of the matrix of control variables, X; and (iii) the residual, 𝑒 . The 

first observation of the dependent variable is then generated by combining these as follows: 

𝑌 0.015 ∙ 𝐶𝑅𝑃 𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒 , where the 𝛽  come from the 



5 
 

Sullivan et al.’s (2004) original regression. The first observation of the new, simulated dataset 

is then (𝑌 , 𝐶𝑅𝑃 , 𝑋 , , 𝑋 , , …, 𝑋 , ). Suppose the second row randomly selected by 

BLW’s procedure is row 66. Then the corresponding second simulated value of the dependent 

variable is given by 𝑌 0.015 ∙ 𝐶𝑅𝑃 𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒 , and the 

corresponding second observation of the new, simulated dataset is then (𝑌 , 𝐶𝑅𝑃 , 𝑋 , , 

𝑋 , , …, 𝑋 , ). And so on.  

As the resampling is done with replacement, it is possible for the same row to be 

selected more than once. This is also illustrated in FIGURE 1 where I have shown row 32 from 

the original data is again selected in constructing the third observation of the new, simulated 

dataset. This process continues until the predetermined size of the simulated dataset is 

achieved.  

Once the new dataset is constructed, the procedure continues by regressing the vector 

of simulated Y values on the reconstituted vector of the treatment variable, CRP, along with 

the respective control variables. It then tests H0: 𝐵𝑒𝑡𝑎 = 0 at α = 0.05 and records whether H0 

is rejected. This bootstrapping process is repeated M times. The percent of times one obtains a 

significant estimate for 𝐵𝑒𝑡𝑎 is the ex post power from BLW’s method. For example, if M = 

10,000, and the estimated value of 𝐵𝑒𝑡𝑎 is significant in 3,000 of the simulations, then ex post 

power is calculated to be 30%. BLW repeat this process for all 30 combinations of 𝐵𝑒𝑡𝑎  

and sample size values. My first contribution is to see if I can reproduce their results with the 

data and code they supply with their paper.   

 

4.			Replication	

Column I of TABLE 1 reproduces the power statistics from Table 4 of BLW’s original paper. 

I replicate their results two ways. First I use the R code and data they supplied with their paper 

to see if I get the same estimates. The results from this exercise are reported in Column II. I 



6 
 

then take their R code, rewrite it using Stata, and conduct the Monte Carlo experiments with 

the new code. These results are reported in Column III.   

 BLW conduct statistical power calculations for a wide range of effect and sample sizes. 

0.027 is the effect size they care about the most, because any job loss less than that is 

“acceptable” from a benefit-cost perspective. Thus they want to be sure the Sullivan et al. 

(2004) study has sufficient power to obtain a significant estimate if the job loss is that large. 

For each effect size, they calculate ex post power for sample sizes of 100, 150, 190, 200, 250, 

300, and 350. BLW are particularly interested in the results for sample sizes equal to 190, as 

that is the sample size used in the Sullivan et al. (2004) study. I highlight the corresponding 

rows in the table. The other sample sizes are included to give a sense of how power changes 

with sample size for a given effect size. 

As expected, ex post power is largest for the larger (in absolute value) effect sizes and 

larger sample sizes. For an effect size of -0.027 and a sample size of 190 (see the top portion 

of TABLE 1), BLW calculate that the Sullivan et al. (2004) study has statistical power 

approximately equal to 100%. In other words, if the job loss associated with the CRP was large 

enough to reject the CRP on benefit-cost grounds, there is virtually a 100% likelihood that 

Sullivan et al.’s (2004) study would have produced a statistically significant estimate of this 

effect. The fact that they did not obtain a statistically significant estimate leads BLW to 

conclude that the job loss was smaller than this.  

Columns II and III in TABLE 1 report my efforts to replicate BLW’s results, first using 

their R code and then rewriting their program in Stata. Using their R code, I am able to exactly 

reproduce their results. Using my Stata version of their program, I can reproduce their results 

with some miniscule differences. For example, when the effect size is -0.015 and the sample 

size is 100, BLW report an ex post power value of 0.84, but my Stata replication for this case 
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produces a power value of 0.85. I attribute these differences to rounding and the fact that the 

random number generators underlying the simulations use different seeds.  

Using their code, I obtain results that are identical, or approximately identical, to the 

results published in their paper. The same holds when I rewrite their program and use Stata 

rather than R. This demonstrates that I am correctly implementing their procedure and provides 

confidence in the analyses that follow in the subsequent sections. 

 

5.			Robustness	Check	

To further test the reliability of the BLW method, I perform some robustness tests. TABLE 2 

reports the results of two robustness checks where I (i) add a constant term, and (ii) use a 

different resampling procedure.  

As noted above, Sullivan et al. (2004) used Equation (1) to estimate the effect of the 

CRP. Their data matrix 𝑿𝒊 did not include a constant term. Perhaps this was due to the fact that 

their dependent variable was in differences and differencing would eliminate the constant term 

from the untransformed equation. However, it is generally considered bad practice to estimate 

a regression equation without a constant term. Omitting the constant term forces the regression 

line to go through the origin. This could bias estimates of the coefficients of the model’s 

variables. To test the robustness of BLW’s results, I therefore repeated their analysis, this time 

adding a constant term to the regressions estimated in the simulations. 

 In addition, I evaluated whether the specific bootstrap method used by BLW affects 

their power estimates. There are two main ways to bootstrap by resampling: (1) treat the 

regressors as random and resample both variables and residuals, or (2) treat the regressors as 

fixed and resample solely from the residuals of the fitted regression model.  

In BLW’s method, the X’s and residuals are paired with each other and randomly 

sampled as a set. This method was illustrated in FIGURE 1. An alternative approach fixes the 
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original X’s in each simulation, and randomly samples and matches the residuals. I call this 

alternative approach BLWa and illustrate it in FIGURE 2. The difference is that BLWa only 

“shuffles” the residuals. For example, if there are 190 observations in the original dataset, there 

will still be 190 observations in the new dataset, but the arrangement of the residuals will be 

altered, with some residuals potentially appearing more than once.  

In FIGURE 2, the first observation of the new, simulated dataset using BLWa is 𝑌

𝐵𝑒𝑡𝑎 ∙ 𝐶𝑅𝑃 𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒 . Contrast this with 𝑌 𝐵𝑒𝑡𝑎 ∙ 𝐶𝑅𝑃

𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒  under BLW. Likewise, the second observation using BLWa 

is 𝑌 𝐵𝑒𝑡𝑎 ∙ 𝐶𝑅𝑃 𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒  instead of 𝑌 𝐵𝑒𝑡𝑎 ∙ 𝐶𝑅𝑃

𝛽 ∙ 𝑋 , 𝛽 ∙ 𝑋 , ⋯ 𝑒  . 

There is a reason why I am interested in investigating the performance of this alternative 

variant of BLW. BLW does not consider how changes in the composition of the data matrix 

affect ex post power. Suppose X is a binary variable taking values 0 and 1. Suppose that in a 

dataset of 10,000 observations, X = 0 for half the sample and X = 1 for the other half. Consider 

the DGP: Y = 1000 + 3.92ꞏX + error, where error ~ N(0, 𝜎2), and 𝜎 100. As shown below, 

the corresponding standard error of the slope coefficient from OLS estimation of this equation 

is 2. Accordingly, approximately half of the sample t-values will be greater than 1.96 (  .
), 

and half will be less than 1.96, so that the corresponding statistical power will be 50%.  

Now consider the case where individual X values are resampled with replacement. 

Because the same X values can be resampled more than once, it is possible that a simulated 

dataset could consist of an unequal number of 0’s and 1’s, say, 7,500 observations with X = 1 

and 2,500 observations with X = 0. Using the same DGP as above, it is straightforward to show 

that BLW’s method would produce an ex post power value of 43% in this case. In other words, 

BLW’s ex post power method depends on the particular configuration of X values drawn from 

the random selection procedure. If, however, we are interested in calculating ex post power for 
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the specific configuration of X values in the original data, these should be fixed at their original 

values. This is the motivation behind the alternative bootstrapping procedure, BLWa. 

 The results of my robustness checks are reported in TABLE 2. The first column 

reproduces the Stata results from TABLE 1 to facilitate comparison. The second column 

(“Robustness 1”) reports the results when I repeat BLW’s procedure, this time adding a 

constant term when estimating the regressions in the simulations. The third column 

(“Robustness2”) employs the variant BLWa procedure described above. Note that the BLWa 

procedure always has 190 observations because it fixes the dataset at its original values, without 

resampling. Only the residuals are resampled.  

As one can see from TABLE 2, including a constant term makes no appreciable 

difference. I conclude that BLW, at least in this instance, is robust to the exclusion of a constant 

term. In contrast, the alternative resampling method BLWa does make a small difference. For 

example, when 𝐵𝑒𝑡𝑎 0.01 and sample size = 190, BLW’s method produces an ex post 

power estimate of 89% (see “Reproduction” column). BLWa produces an ex post power 

estimate of 94%. Similar differences are observed for 𝐵𝑒𝑡𝑎 0.005 and 𝐵𝑒𝑡𝑎

0.001.  

The differences between BLW and BLWa raise a number of questions. Without some 

ground truth to compare to, it is difficult to say which method is “better”. However, a full 

performance assessment lies beyond the purview of this replication. Such an assessment would 

go beyond the example of Sullivan et al. (2004) and consider other error structures, such as 

clustering. Once clustering is brought into the analysis, additional bootstrapping methods, such 

as wild-cluster bootstrapping (Cameron et al., 2008; Roodman, 2019), should also be 

considered. A full exploration of this issue would lead me away from my focus of replicating 

BLW. Nevertheless, a focused performance assessment of BLW’s method could provide 

insight into the value of their method. I pursue this in the next section.	 	



10 
 

6.			A	Performance	Analysis	of	BLW	

Somewhat surprisingly, BLW do not provide any discussion to justify their method, only citing 

Cameron & Trivedi’s (2006) classic textbook, Microeconometric Analysis. To assess the 

performance of BLW’s method, I conduct Monte Carlo experiments where I create a data 

generating process (DGP) with known Power, then see how well BLW’s method is able to 

estimate it. I start with a simple DGP: 

 𝑦   100 𝐸𝑆 ∙  𝑥   𝑒𝑟𝑟𝑜𝑟 ,  (2) 

where 𝐸𝑆 is the effect size and error ~ N (0, 1002).  I set a sample size of 10,000 observations, 

with half receiving the treatment (x=1) and half not (x=0).  

 Starting from a significance level 𝛼 0.05 and 𝑁 10,000, it is easy to complete the 

conversion from the variance of the error term to the standard error of the estimated effect, 

𝑠. 𝑒. 𝐸𝑆 : 

 
𝑠. 𝑒. 𝐸𝑆  = 

∑
 , (3) 

where 𝜎  is the variance of the error term, ∑ x x  is the sum of squared deviations of x, 

and N is the sample size.  Given that half of the observations receive the treatment and half do 

not, x={0,1}, �̅�  = 0.5, (𝑥 �̅�) = 0.5, and 𝑥 �̅� = 0.25. Thus, ∑ x x 10,000

0.25 2500. It follows that 𝑠. 𝑒. 𝐸𝑆 =   2.  

Once 𝑠. 𝑒. 𝐸𝑆  is known, then the ES corresponding to any given Power value can be 

calculated using the following formula (Djimeu & Houndolo, 2016): 

 𝐸𝑆    𝑡 , 𝑡 , 𝑠. 𝑒. 𝐸𝑆   (4) 

where (i) t ,  is the value of the t-distribution with v degrees of freedom such that Prob(𝑡

𝑡 , 1 100%; and (ii) 𝑡 ,  is the corresponding value such that Prob(𝑡
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𝑡 , 𝑃𝑜𝑤𝑒𝑟. For example, given Power equal to 40%, α=0.05 and N=10,000, it follows 

that 𝑡 , 1.96 and t . , 𝜐  0.25 . Thus, 𝐸𝑆   1.96 0.25 2   3.42. In this 

manner I calculate effect sizes, ES, for Equation (3) that correspond to Power values of 20%, 

30%, …, 80%, 90%.  

I need to make a small modification to calculate ES when Power is 10%. For small 

values of Power, Equation (4) produces values of ES that are somewhat too large. This happens 

because Equation (4) only looks at one tail of the t-distribution.  Equation (5) gives the correct 

formula to calculate ES when Power is small: 

 1 𝜙 𝑡 ,
| |

. .
𝜙 𝑡 ,

| |

. .
𝑃𝑜𝑤𝑒𝑟, (5) 

where 𝜙 is the cumulative distribution function of the t-distribution with 𝑣 degrees of freedom. 

If α=0.05, 𝑠. 𝑒. 𝐸𝑆 2, 𝑃𝑜𝑤𝑒𝑟 10%, and 𝑣 is very large, then Equation (5) yields ES = 

1.31. Using the one-tailed formula in Equation (4) produces a value for ES = 1.36, which is 

slightly larger. For larger values of Power, say 20%, the difference between the two equations 

becomes negligible and I can ignore the other tail. 

For a given Power and corresponding ES value, I run a Monte Carlo experiment where 

I generate 10,000 observations using the DGP in Equation (2). I then use these simulated data 

to estimate the regression equation,  𝑦   𝛽 𝛽 ∙ 𝑥   𝑒𝑟𝑟𝑜𝑟 , and save the residuals, 

𝑒𝑟𝑟𝑜𝑟 .  The next step consists of resampling the 10,000 observations (𝑥 , 𝑒𝑟𝑟𝑜𝑟 ) with 

replacement, and creating 10,000 corresponding 𝑦  values as per BLW’s procedure. I then take 

the simulated 𝑦  and resampled xi values and run a regression of 𝑦  on xi.  This produces a single 

estimate of 𝛽 , and I record whether it is statistically significant. I repeat this process 999 times 

until I have 1,000 estimates of 𝛽 . The percentage of 𝛽 estimates that are statistically 

significant provides one estimate of Power for that experiment.  
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I then repeat the experiment above, generating 10,000 new observations from the DGP 

in Equation (2), using the same ES value as before. This produces a new set of residuals, 𝑒𝑟𝑟𝑜𝑟 , 

which I then resample with replacement to create new simulated 𝑦  values. I regress these on 

the resampled xi values to get a fresh estimate for 𝛽 . I repeat this process until I have a 

completely new set of 1,000 estimates of 𝛽 . The associated percentage of significant estimates 

produces a second estimate of Power.  

The whole process above is repeated again and again until I obtain 1,000 Power 

estimates. By comparing the mean and 95% sample interval of these 1000 estimates with the 

true Power value, I can assess how well BLW’s method performs. I do this for each Power 

value, Power = 10%, 20%, 30%, …, 80%, and 90%.  

The results are reported in TABLE 3. Each row summarizes the experimental results 

for a given true Power and corresponding ES value consisting of 1,000 Power estimates, which 

in turn are each based on 1,000 estimates of 𝛽 . Column (I) reports the true Power value. 

Column (II) reports the average Power value for the sample of 1,000 Power estimates. It 

provides a measure of bias. Column (III) reports a 95% “confidence interval”, where the lower 

and upper bounds are set equal to the 0.025 and 0.975 percentile values of the distribution of 

1,000 estimated Power values. It provides a measure of precision. 

My simulation results provide evidence that BLW’s method performs exceptionally 

well on the dimension of bias. As shown in Column II, average Power values are very close, if 

not exactly equal, to the true Power values. Column III assesses how close the individual Power 

estimates are to the true values. For example, when true Power is 10%, 95% of the Power 

estimates produced by BLW’s method lie between 8.3% and 11.9%. Performance is similar for 

other Power values. When Power is 50%, the 95% sample interval ranges from 46.9% to 

53.0%. For 80% Power, the corresponding interval is bounded by 77.1% and 82.6%. I view 

these measures as highly favourable to BLW’s procedure. While the results in TABLE 3 derive 
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from a very simple data environment with a spherical error structure, they provide some 

evidence that BLW’s procedure could provide reliable estimates of ex post power.  

 

7.		Conclusion	

Replication plays, or should play, a fundamental role in any empirical science. To be able to 

independently confirm previously published results is critical for establishing a solid 

foundation for future research to build on. In this replication, I investigate Browne, Lambert, 

and Wojan’s (2019) (BLW) procedure for calculating ex post power. While ex ante power 

calculations are commonly done in many fields, these basically consist of estimating the 

standard error of the estimated treatment effect in advance. Whether these ex ante estimates are 

sufficient to produce reliable estimates is power is unknown. It would be useful to compare 

them with ex post estimates of power. Unfortunately, there is at the current time no generally 

accepted way of calculating ex post power. BLW provide a novel method for doing this though 

they provide little justification for their method or evidence of its reliability.  

It is in that context that my replication of their work makes three contributions. First, it 

confirms that the data and code they provide with their paper is sufficient to reproduce their 

results. Second, it performs two robustness checks to determine if slight alterations to their 

procedure affect their results. I determine that including a constant term in their procedure does 

not affect the results. On the other hand, using a different bootstrapping procedure does produce 

somewhat different results. However, without any ground truth to use as a benchmark for 

comparison, one cannot say which bootstrapping procedure is better.  

My third contribution is that I use Monte Carlo experiments to assess the performance 

of BLW’s method on the basis of biasedness and precision. My experimental results indicate 

that their method is unbiased and produces a relatively narrow range of estimates. These 

experimental results suggest that BLW’s method may provide a reliable method for researchers 
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to calculate ex post power. However, my experiments employ a relatively simple data 

generating process. Future research should investigate whether these promising initial results 

extend to more complicated, and realistic, data environments.  
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TABLE 1 
Replication of BLW’s Ex Post Power Results  

 

𝑩𝒆𝒕𝒂𝑴𝑪 n 
BLW 

(I) 
Reproduction-R 

(II) 
Reproduction-Stata 

(III) 

‐0.027  100  0.99  0.99  0.99 

‐0.027 150 1.00 1.00  1.00 

‐0.027  190  1.00  1.00  1.00 

‐0.027  200  1.00  1.00  1.00 

‐0.027  250  1.00  1.00  1.00 

‐0.027  300  1.00  1.00  1.00 

‐0.027  350  1.00  1.00  1.00 

‐0.015  100  0.84  0.84  0.85 

‐0.015  150  0.96  0.96  0.96 

‐0.015  190  0.99  0.99  0.99 

‐0.015  200  0.99  0.99  0.99 

‐0.015  250  1.00  1.00  1.00 

‐0.015  300  1.00  1.00  1.00 

‐0.015  350  1.00  1.00  1.00 

‐0.010  100  0.59  0.59  0.59 

‐0.010  150  0.79  0.79  0.79 

‐0.010  190  0.88  0.88  0.88 

‐0.010  200  0.90  0.90  0.89 

‐0.010  250  0.96  0.96  0.95 

‐0.010  300  0.98  0.98  0.98 

‐0.010  350  0.99  0.99  0.99 

‐0.005  100  0.24  0.24  0.23 

‐0.005  150  0.33  0.33  0.33 

‐0.005  190  0.42  0.42  0.42 

‐0.005  200  0.43  0.43  0.42 

‐0.005  250  0.51  0.51  0.53 

‐0.005  300  0.60  0.60  0.60 

‐0.005  350  0.67  0.67  0.67 

‐0.001  100  0.06  0.06  0.06 



17 
 

𝑩𝒆𝒕𝒂𝑴𝑪 n 
BLW 

(I) 
Reproduction-R 

(II) 
Reproduction-Stata 

(III) 

‐0.001  150  0.06  0.06  0.06 

‐0.001  190  0.06  0.06  0.07 

‐0.001  200  0.06  0.06  0.06 

‐0.001  250  0.07  0.07  0.07 

‐0.001  300  0.07  0.07  0.07 

‐0.001  350  0.07  0.08  0.08 

 
NOTE: Column I shows the statistical power described in BLW’s paper (Page 10, Table 4). 
Column II shows that statistical powers I produce when using BLW’s R code. Column III 
shows that statistical powers I get after reprogramming BLW’s method in Stata. All results in 
the table are presented to two decimal places.  
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TABLE 2 
Robustness Checks 

 

𝑩𝒆𝒕𝒂𝑴𝑪 n 
Reproduction 

(Stata) 
Robustness1 

(Constant Term) 
Robustness2 

(BLWa Method) 

‐0.027  100  0.99  0.99  ‐‐‐‐ 

‐0.027  150  1.00  1.00  ‐‐‐‐ 

‐0.027  190  1.00  1.00  1.00 

‐0.027  200  1.00  1.00  ‐‐‐‐ 

‐0.027  250  1.00  1.00  ‐‐‐‐ 

‐0.027 300 1.00  1.00  ‐‐‐‐ 

‐0.027  350  1.00  1.00  ‐‐‐‐ 

‐0.015  100  0.85  0.83  ‐‐‐‐ 

‐0.015  150  0.96  0.96  ‐‐‐‐ 

‐0.015  190  0.99  0.99  1.00 

‐0.015  200  0.99  0.99  ‐‐‐‐ 

‐0.015  250  1.00  1.00  ‐‐‐‐ 

‐0.015  300  1.00  1.00  ‐‐‐‐ 

‐0.015  350  1.00  1.00  ‐‐‐‐ 

‐0.010  100  0.59  0.58  ‐‐‐‐ 

‐0.010  150  0.79  0.78  ‐‐‐‐ 

‐0.010  190  0.89  0.87  0.94 

‐0.010  200  0.89  0.88  ‐‐‐‐ 

‐0.010  250  0.95  0.95  ‐‐‐‐ 

‐0.010  300  0.98  0.98  ‐‐‐‐ 

‐0.010  350  0.99  0.99  ‐‐‐‐ 

‐0.005  100  0.23  0.24  ‐‐‐‐ 

‐0.005  150  0.33  0.32  ‐‐‐‐ 

‐0.005  190  0.42  0.42  0.49 

‐0.005  200  0.42  0.42  ‐‐‐‐ 

‐0.005  250  0.53  0.52  ‐‐‐‐ 

‐0.005  300  0.60  0.59  ‐‐‐‐ 

‐0.005  350  0.67  0.66  ‐‐‐‐ 

‐0.001  100  0.06  0.06  ‐‐‐‐ 

‐0.001  150  0.06  0.06  ‐‐‐‐ 



19 
 

𝑩𝒆𝒕𝒂𝑴𝑪 n 
Reproduction 

(Stata) 
Robustness1 

(Constant Term) 
Robustness2 

(BLWa Method) 

‐0.001  190  0.07  0.07  0.09 

‐0.001  200  0.06  0.07  ‐‐‐‐ 

‐0.001  250  0.07  0.07  ‐‐‐‐ 

‐0.001  300  0.07  0.07  ‐‐‐‐ 

‐0.001  350  0.08  0.08  ‐‐‐‐ 

 
NOTE: “Reproduction (Stata)” identifies statistical powers I get after reprogramming BLW’s 
method in Stata. “Robustness1” means the first robustness check where I include a constant 
term. “Robustness2” means I apply the alternative bootstrapping method BLWa as described 
in the text. All results in the table are reported to two decimal places. 
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TABLE 3 
Replication of BLW1 Power with DGP Results  

 

𝑬𝑺 
True 

Power 
(I) 

BLW’s  
Power 

(II) 

95% Sample 
Interval 

(III ) 

1.31  0.100  0.100  (0.083, 0.119) 

2.24  0.200  0.200  (0.175, 0.225) 

2.87  0.300  0.300  (0.270, 0.328) 
3.42  0.400  0.399  (0.367, 0.430) 
3.92  0.500  0.499  (0.469, 0.530) 
4.43  0.600  0.599  (0.567, 0.633) 
4.97  0.700  0.699  (0.670, 0.728) 
5.60  0.800  0.799  (0.771, 0.826) 
6.48  0.900  0.900  (0.879, 0.919) 

 
NOTE: Column I shows the statistical power I set in my data generating process (DGP), which 
is the true power. Column II shows that statistical powers I get using BLW’s method. Column 
III shows a 95% sample interval of BLW’s power.  
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FIGURE 1. Schematic Diagram of Original BLW Bootstrapping Method 
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FIGURE 2. Schematic Diagram of BLWa Bootstrapping Method 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
NOTE: For BLWa, there are always 190 observations. 
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FIGURE 3 

Distribution of Estimated Power Values as a Function of True Power  
Using BLW’s Method 

 
 

 
 

NOTE: The grey area shows the 95% sample intervals of estimated Power values from Monte 
Carlo experiments using BLW’s method (cf. Section 6 in the text). Note that sample intervals 
only exist for Power values of 10%, 20%, 30%, …, 80%, and 90%. The intervening areas are 
filled in to facilitate legibility. 
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