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growing season temperature that gives an optimal temperature value that is plausible given 
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collapsing becoming very small. We conclude that there is great potential in using vintage data 
constructed from expert-rating data for individual wines for climate change research. 
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1. Introduction 
 

It is an undeniable fact that the wine regions around the world are affected by climate 

change1. The quality of fine wine in particular depends on the quality of the grapes, which is 

affected by the climatic conditions during the wine-growing season (Tate, 2001, Hannah et al., 

2013 and Mozell and Thach, 2014). Climate change has increased the average global temperature 

by more than a degree Celsius since 1880, and the warming of the temperature is picking up pace 

(Turner et al., 2009). Higher temperatures lead to grapes ripening earlier, which affects the 

composition of the grapes, ultimately changing the quality of the wine. In the Coonawarra region 

of Australia, for example, Cabernet Sauvignon can now be harvested 45 days earlier than before 

(Webb et al., 2007, 2008, 2012). Depending on the current climate and the expected change in 

climate in a given wine region, climatic changes may have positive or negative implications on 

the wine quality (Tate, 2001, van Leeuwen and Darriet, 2016). This paper contributes to the 

knowledge about the effect of climate change on the quality of wine by examining New Zealand 

data. 

 To understand the effects of climate on wine quality, it is necessary to have a good 

measure of or a proxy for the quality of wine. A pioneer in the field, Ashenfelter, used auction 

prices to measure the quality of a small number of Bordeaux Chateaux wines. Known as the 

“Bordeaux equation”, the model attributes higher wine quality to higher growing-season 

temperature, higher dormant-season rainfall and lower harvest rainfall. It has been successful in 

predicting prices of mature wines, often surpassing the predictive power of the expert wine 

tasters who make predictions of the quality of a young wine when at maturity (Ashenfelter et al., 

1995; Ashenfelter, 2008, 20102). Byron and Ashenfelter (1995) used same equation to 

successfully predict mature-auction prices of a single Australian wine, Penfold’s Grange 

Hermitage. Wood and Anderson (2006) used Langton’s auction data for three icon Australian red 

                                                           
1 According to the Intergovernmental Panel on Climate Change [IPCC] (2007), climate change is a statistically 
significant variation in either the mean state or the variability of climate that persists for an extended period, 
typically decades or longer. 
2 Ashenfelter (2008, 2010) provide peer-reviewed and updated results that first appeared in Ashefelter’s online 
blog, Liquid Assets, in Ashenfelter (1986,1987a, 1987b, 1990). 
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wines. They concluded that the price variations of the Penfold’s Grange and St Henri can best be 

modelled with a linear function while Henschke’s Hill of Grace fits best a quadratic model of the 

growing-season temperature and that the average daily temperature and the average daily 

maximum temperature give approximately the same results.  

In theory, prices are more likely to reflect the quality of the wine in a given vintage when 

prices vary from vintage to vintage, both up and down, and when consumer information is 

reflected in the prices. These conditions are certainly met with fine mature-wine auctions where 

fluctuations in demand lead to immediate fluctuations in prices. Ashenfelter (2010, as referenced 

in Ashenfelter and Storchmann, 2016) found that auction prices of mature Bordeaux wines 

produced by the same winemaker from fruit grown on the same plot of land can vary by a factor 

of 20 or more from year to year depending on the quality of the vintage. Where mature-wine 

auctions are not commonplace, one could use cellar-door prices or recommended retail prices. 

These prices, however, tend not to vary from vintage to vintage, especially not downwards, 

making them potentially problematic to use prices as the proxy for quality in climate change 

research. However, Haeger and Storchmann (2006) successfully used the recommended retail 

prices of 451 California and Oregon Pinot Noir rated in the Wine Spectator in 1998-2003 and 

found that the relationship between a price and the growing-season temperature is a positive, 

concave function.   

An alternative way to measure the quality of the wine is to use expert ratings of the wine. 

Because it takes a lot of training to recognise a good-quality wine, let alone variations in the 

quality between the vintages, the average wine consumer relies on the expert opinion of others 

(Storchmann, 2012). While the ability and integrity of professional wine tasters have been 

questioned by a number of researchers in wine economics (see for example Hodgson, 2008; 

Goldstein, 2008; and Reuter, 2009), expert opinion is used in wine research to proxy quality as it 

is often the best available option. Some of this research uses both prices and expert opinion to 

gauge the ability of experts to predict the wines that will ultimately be the most valuable. 

Ashenfelter and Jones (2013) found that experts' ratings add some predictive power to 

regressions that estimate auction prices as functions of weather variables, potentially justifying 

the use of expert ratings to proxy quality in a situation where no data on auction prices exists.  
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Most research using expert ratings use vintage ratings rather than ratings for individual 

wine, including Ashenfelter and Jones discussed above. Vintage ratings are favoured because 

there is often more agreement about it than about ratings of individual wines and because this 

avoids the complications that arise due to variations in winemaking affecting wine quality. 

Jones et al. (2005) used the Sotheby's vintage ratings in their study of the effect climate on wine 

quality for the dominant varieties grown in important wine regions around the world. They found 

a significant concave relationship between growing-season temperature and vintage rating for 

some varieties and regions while for others the relationship was either found to be insignificant 

or convex. The results of Jones et al. suggest that wine regions in Europe are currently facing the 

optimal growing season temperatures for the grapes traditionally grown in those regions and 

that, by 2050, the wine quality in Europe may well have started to decline unless wineries are 

able to adapt by growing new varieties or adopting new wine-making techniques. However, their 

findings suggest that the relationship between climate and the quality of wine is less clear for the 

New World wine regions. Other research that has used vintage ratings includes Grifoni et al. 

(2006) and Corsi and Ashenfelter (2019), both of which studied the effects of weather on some 

prestigious North-Western Italian wines. While Grifoni et al. found that higher vintage scores 

were associated with higher temperatures and lower rainfall during the growing season, Corsi 

and Ashenfelter found weak results at best, with only summer rain having a significant coefficient 

with the predicted sign. Baciocco et al. (2014) used consensus ranking of vintages to study the 

effect of weather on Bordeaux red and sweet white wine vintage rankings. They found that while 

the growing season temperature correlated positively and the growing season rain negatively 

with the quality of both wine types, the optimal conditions during ripening, verison and 

dormancy were different. Sadras et al. (2007) used the vintage ratings of 24 Australian wine 

regions over 25 years and found that the increase in the average temperature has had a positive 

effect on the ratings of red vintages and reduced the ratings’ variability from year to year, but 

these results were not found for the vintages of white wines. Jones and Davis (2000) used 

Bordeaux vintage ratings to study the two main red Bordeaux varieties - Merlot and Cabernet 

Sauvignon - and found that the variations in vintage quality were mostly derived from the 

variation in the characteristics of Cabernet Sauvignon. 
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There are also a small number of papers that, like us, use expert ratings of individual wines 

to proxy the quality of wines. Ramirez (2008) used Wine Spectator scores of all Napa Valley 

Cabernet Sauvignon to study the effect of weather on ratings and prices. He found that, while 

about 70% of the variation in prices could be explained by weather, only about 3% of the variation 

in expert ratings was explained by weather. He also found that many of the coefficient signs were 

inconsistent with expectation or not statistically significant, especially in the quadratic functions 

that he found to be rife with issues with multicollinearity given that linear terms and quadratic 

terms are correlated by definition. Oczkowski (2016) used ratings from Halliday (2014) to study 

the weather-rating and the rating-price relationships for a number of Australian varieties. He 

found consistent negative effects of harvest rain. The expected concave relationship for the 

growing-season temperature was found to be significant for Cabernet Sauvignon, Chardonnay, 

Merlot, Pinot Noir, Sauvignon Blanc and Shiraz while the effect was found to be exactly the 

opposite for Riesling and Semillon.  

This paper presents new evidence about the validity of using expert ratings of individual 

wines to proxy for wine quality in climate change research, using Bob Campbell's wine scores as 

a proxy for the wine quality.  Bob Campbell is one of the most influential wine scorers in New 

Zealand and holds the coveted Master of Wine qualification. Furthermore, his rating database is 

by far the most extensive - our dataset, that includes the seven varieties with most ratings from 

2002-2016, has nearly 15,000 observations. Following Oczkowski (2016), we estimate the link 

between the quality and weather variables separately for each variety to capture that variety’s 

unique relationship with weather. For this reason, we also limit our analysis to the wines that 

have a single variety. Also in line with Oczkowski, we pool observations from the seven wine 

regions together to maximise the number of observations available for each variety, which 

implicitly assumes that the function that links weather to quality remains the same across regions 

although the weather varies between them. 

We start with a standard OLS model but we also use a fixed-effects model with product-

level fixed effects. High-quality wines are often produced with grapes from old vines, planted in 

a terroir that is best-suited for the varietal and pruned and watered optimally. The winemaker’s 

skill, the quality and age of the barrels used for the fermentation and ageing as well as the length 
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of time the wines are aged in a barrel and other wine-making techniques contribute to quality. 

Using product-level fixed effects is a method to control for all the variability in the underlying 

quality that is driven by all factors outside of weather.  Most previous studies have not had to 

worry about this aspect, having focused on the best-quality wines produced under strictly 

controlled conditions where variation in quality is therefore more likely to reflect variations in 

weather. The use of vintage scores also removes this issue.   

We assume that the true relationship between climate and wine quality is a positive, 

concave function of temperature, indicating that there is a maximum temperature beyond which 

we would expect the wine quality to deteriorate. For us to have confidence in our regression 

results, therefore, we need to find a positive coefficient for the linear temperature term and a 

negative coefficient for the quadratic term. Also, we need the predictions for the optimal 

temperature levels, derived from the regression coefficients, to be reasonable and in line with 

findings from other countries for the grape varieties that we investigate, although some variation 

can be expected due to differences in wine-making styles. We would also like the temperature-

related regression coefficients to be statistically significant and to have a reasonably high R2 

value.  

Much of the existing research findings suggest that the key climatic variables affecting 

wine quality is the growing–season temperature and that the quality improves with dormant-

season rainfall but goes down with harvest rain. While studies that focus on predicting the value 

of a mature wine using weather data tend to use a linear model, the concave function of 

temperature is in line with the understanding that increases in temperature will eventually start 

to reduce the quality of wines, if they have not already done so, and is thus more suitable when 

looking for long-term effects of climate change on the quality of wine. We want to see if our 

product-level dataset is able to produce robust results to support climate change research.  

The quality of the wines included in our study vary immensely between the products, 

which is perhaps the best highlighted by the price range from $7 to $350.  The wines that are 

produced in a way that optimises the variables that are under the viticulturist’s and wine-maker’s 

control are at the quality possibilities frontier that maps the weather variables to the best possible 

quality given the weather. For such a wine, any improvements in weather are likely to see a 
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better-quality wine and vice versa. However, it is it is less clear if this is the case for mass-

produced wines where the winemaker’s goal is to produce an affordable wine with a large yield. 

If not, then having these wines in the sample could bias the results. Using product-level fixed 

effects will not solve this issue because it assumes common coefficients for the weather 

variables. We use two different treatments to restrict our sample to wines of better quality to 

see if this is an issue. The first method limits the sample to wines with higher prices. The second 

method uses the 2017 Suckling list of top-100 wines from New Zealand to limit our sample to all 

the available vintages of the wines that are on that list. We find better results when focusing on 

the more expensive wines for Chardonnay, Merlot and Sauvignon Blanc and the top-100 wines 

for Syrah, but for other varieties, such as Pinot Noir, the results do not improve and may 

deteriorate.  

Last, we move to testing the model with “vintage data”, obtained from our product-level 

data by averaging the scores and associated weather variables by each variety, region and year, 

to see if using a constructed vintage score improves the ability to identify the underlying link 

between wine quality and weather. On the plus side, using vintage scores can remove some 

subjectivity from the individual scores, which could lead to better precision in the findings. It also 

allows us to compare our results to others, such as Jones and Davis (2000), Jones et al. (2005) 

and Corsi and Ashenfelter (2019), who used vintage scores. Furthermore, the method reconciles 

some of the differences in the explanatory power that have been found by researchers using 

vintage scores and those using product-level, micro data where the former performs consistently 

better. On the minus side, creating this “macro” dataset greatly reduces the size of the dataset, 

which in itself should have a detrimental effect on the precision of the results.  

Our results when using the micro data are mixed – the coefficients for the key 

temperature variables are as expected in 56% of the treatments but significant in just 27% of 

them. The OLS model performs significantly better than the FE model. We find that the results 

vary greatly for different grape varieties, consistent with what others have found. Our best results 

are found for Chardonnay, Sauvignon Blanc and Pinot Gris. The red varieties perform worse than 

the white varieties, but they each have at least one treatment that give us potentially useful 

results. This is somewhat different from what Sadras et al. (2007) found for Australia where the 
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link between weather and quality was found for red varieties only and no doubt reflects the 

different climatic conditions in Australia compared to New Zealand. When using the constructed 

vintage data, however, we get results that are consistent, plausible and in many cases very 

precise despite having only a small number of observations. The coefficients for the key 

temperature variables are as expected in 100% of the treatments and significant in 53% of them. 

We therefore conclude that there is great potential in using vintage data constructed from 

product-level data to help understand the impact of climate change on the quality of wine.  

The remainder of this paper is organised as follows. Section 2 describes the data sources 

and variables used in the regression analysis. Section 3 presents the methodology and models 

and Section 4 presents the results. Section 5 concludes. 

 

2.  Data and Variables 
 

The key variables required for our research include the wine rating data that we collected 

from Bob Campbell’s website and the weather data that we collected and transformed from 

National Institute of Water and Atmospheric Research [NIWA]. We also needed geographic 

coordinates to match each vineyard to the closest NIWA weather station. 

We collected the ratings of New Zealand wines rated by Bob Campbell from 2002 to 2016 

in our dataset. While the dataset goes back to 2000, we did not include observations from 2000-

2001 when a very small number of wines were being rated compared to subsequent years. At 

the time of data collection in 2019, the dataset was not yet complete for vintages beyond 2017 

and therefore our dataset ends in 2016. All the wines in the database were rated on a 100-point 

scale3 although there are no wines rated below 84 in the dataset.  We focus on the seven most 

prominent varieties - Pinot Noir, Syrah, Chardonnay, Merlot, Sauvignon Blanc Riesling and Pinot 

Gris and dropped the observations of other varieties and blended wines. Our panel dataset is 

                                                           
3 Campbell originally scored using a 20-point system but later switched to the 100-point scale used by Gourmet 
Traveller Wine as well as Robert Parker, using a mathematical model to convert his earlier scores into ones that are 
compatible with the 100-point system. 
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imbalanced with the number of different wines each year varying from 285 in 2002 to 1,587 in 

2009, giving us a total of 14,821 observations. 

We collected the GPS coordinates of the wineries from the New Zealand Wine Growers’ 

Association website and of the weather stations from the NIWA Research website to allow us to 

match the vineyards with the closest weather station. The obvious limitation of our approach is 

that, while we use the weather data of the closest weather station, the distance to the closest 

weather station varies and the data may not perfectly fit with the growing conditions of the 

vineyard. It is also possible that the vineyard or the block where the specific grapes were grown 

has a microclimate that differs from the climate of the closest station even when the weather 

station is close. What we have, however, is the closest possible approximation of each vineyard’s 

weather that is available to us.  In the small number of cases where the GPS coordinates of the 

vineyard were not known but we knew the general winegrowing region, we matched the winery 

with the average weather data from the wine region’s weather stations. 

The data available on the NIWA website includes daily data on the maximum 

temperature, the minimum temperature, relative humidity and rainfall. While relative humidity 

clearly affects the quality of the grapes, we did not use relative humidity in our regressions due 

to encountering issues with multicollinearity, given that relative humidity and rainfall are closely 

correlated. Most other research that we refer, including the seminal research of Ashenfelter, 

omits relative humidity, and we suspect it is for the same reason. The exceptions to this are Byron 

and Ashenfelter (1995) and Wood and Anderson (2006) who include the relative humidity 

variable but find that it does not explain the quality of wine.  

The vintage of a wine is defined by the year of the harvest and the weather data that is 

matched with that wine is collected for the twelve months immediately prior to the harvest. Thus, 

New Zealand being a Southern Hemisphere country, the wine calendar starts in May after the 

previous harvest and ends in April the year of the harvest. The dormant season runs from May 

to September and the growing season from October to April. The temperature variables are 
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expressed as average daily values and the rain variables are aggregates. This approach is similar 

to that taken by Ashefelter (2008, 2010)4. The variables used are described in Table 1.   

 
Table 1: A description of the variables used in the research. 

Variables Description of the Variables 

score Wine score from Bob Campbell’s website5 

tgrowing 

tgrowingmax 

 

tgrowingdiff 

Average temperature* in October-April (growing season)  

Average maximum temperature in October-April (growing 

season) 

Average daily difference between the maximum and the  

minimum temperature in October-April (growing season) 

rdormant Aggregate rainfall (mm) for May-September (dormant season) 

rharvest Aggregate rainfall (mm) for March-April (harvest season) 

* The daily temperature observation used to construct this variable is averaged from the daily maximum 
and minimum values, making this essentially the average average temperature. 
 

Table 2 contains the summary statistics of the climatic variables used in the research for 

New Zealand as a whole and for its seven main wine regions, organised from North to South, for 

years 2002, 2016 and 2002-2016. It also shows results of a regression where the average weather 

observation per region is regressed on the time trend and where coefficient for the trend variable 

measures the annual growth in the climatic variable. The last column in Table 2 presents the 2022 

forecast for each weather variable, obtained with the regression results6. The forecast value is 

useful to compare that region’s current weather to what our models tell us is the optimal weather 

for a given variety, a discussion that we have in Section 4. Given that the weather fluctuates 

around the trend from year to year, it is better to use the forecasted current value instead of the 

current value itself. It is clear from Table 2 that the minimum temperature falls as one moves   

                                                           
4 Ashenfelter also used a variable that measured the age of the wine from the harvest because he was 
investigating the quality of mature Bordeaux wines. The wines in our database are generally rated soon after 
release, when they are available for purchase and we did not record the age of the wine at tasting when 
constructing the dataset. In hindsight, having had the tasting date would have been a great addition to the dataset. 
5 http://bobcampbell.nz/ which directs to https://www.therealreview.com/wines/ 
6 Specifically, the 2022 forecast is equal to the constant + trend coefficient *(2022-2002). 

http://bobcampbell.nz/
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Table 2: Summary statistics of the different temperature variables and the rainfall variables for 
2002, 2016 and 2002-2016 including trend and 2022 prediction, for New Zealand and main wine 
regions. 

  2002 2016 2002-2016 Regression results 2002-2016 
Region and Variables mean sd mean sd mean sd Constant trend R2 2022 
New Zealand                 
tgrowing 15.69 1.099 16.00 0.851 15.44 0.927 15.22*** 0.0320 0.181 15.86 
tgrowingmax 19.89 1.220 21.47 1.189 20.56 1.326 19.91*** 0.0865*** 0.582 21.64 
tgrowingmin 11.26 2.099 10.45 2.092 10.21 1.986 10.35*** -0.0149 0.028 10.05 
dormantrain 335.8 160.1 310.2 119.1 387.3 165.1 369.8*** 1.444 0.007 398.7 
harvestrain 59.42 35.83 82.83 64.54 73.83 49.89 69.30*** 0.736 0.013 84.02 
Auckland                 
tgrowing 17.99 0.0649 18.59 0.295 17.82 0.492 17.38*** 0.0706*** 0.469 18.79 
tgrowingmax 21.65 0.0349 22.27 0.552 21.56 0.647 21.01*** 0.0869*** 0.492 22.75 
tgrowingmin 14.34 0.0898 14.92 0.178 14.09 0.537 13.76*** 0.0544** 0.336 14.85 
dormantrain 597.8 27.40 631.4 60.35 567.3 86.87 525.6*** 7.782 0.169 681.2 
harvestrain 115.4 5.888 27.58 4.820 63.21 50.85 89.80*** -2.590 0.048 37.99 
Hawke's Bay                 
tgrowing 16.19 0.462 16.62 0.500 16.01 0.573 15.69*** 0.0437* 0.253 16.57 
tgrowingmax 18.65 0.411 19.75 0.855 18.87 0.826 18.36*** 0.0686** 0.341 19.73 
tgrowingmin 12.95 0.146 12.95 0.0524 12.47 0.372 12.27*** 0.0302 0.146 12.87 
dormantrain 488.6 41.60 334.9 80.47 515.0 95.16 544.1*** -5.211 0.073 439.8 
harvestrain 44.75 15.96 38.24 19.63 74.09 51.87 84.10*** -1.051 0.009 63.08 
Wairarapa                 
tgrowing 16.27 0.487 16.77 0.494 16.11 0.631 15.82*** 0.0377 0.179 16.57 
tgrowingmax 19.72 0.414 20.64 0.712 19.90 0.884 19.65*** 0.0307 0.083 20.26 
tgrowingmin 12.83 0.893 12.91 0.784 12.32 1.126 11.98*** 0.0448* 0.232 12.88 
dormantrain 308.6 41.09 271.5 60.03 463.2 135.8 454.4*** -0.145 0.000 451.5 
harvestrain 36.44 21.16 24.42 19.90 69.58 43.38 75.06*** -0.674 0.005 61.58 
Nelson                 
tgrowing 15.93 0.0638 16.60 0.0727 15.78 0.350 15.47*** 0.0507** 0.366 16.48 
tgrowingmax 20.13 0.103 21.51 0.140 20.42 0.484 19.99*** 0.0684** 0.401 21.36 
tgrowingmin 11.71 0.283 11.67 0.340 11.12 0.467 10.91*** 0.0350 0.158 11.61 
dormantrain 380.7 6.068 347.8 52.60 452.0 100.8 408.4*** 4.426 0.045 496.9 
harvestrain 80.45 22.54 286.1 33.64 116.9 63.89 69.31** 7.731* 0.252 223.9 
Marlborough                 
tgrowing 15.40 0.138 15.99 0.0633 15.43 0.336 15.13*** 0.0399** 0.271 15.92 
tgrowingmax 20.36 0.574 21.88 0.711 21.03 0.879 20.45*** 0.0738** 0.398 21.93 
tgrowingmin 10.44 0.823 10.10 0.838 9.837 0.847 9.805*** 0.00576 0.006 9.920 
dormantrain 243.0 79.20 367.7 57.16 401.6 139.8 325.8*** 8.353 0.097 492.9 
harvestrain 93.38 20.25 120.4 4.032 91.01 44.33 83.06*** 1.199 0.020 107 
Canterbury                 
tgrowing 13.81 0.396 14.76 0.282 14.15 0.585 13.56*** 0.0749*** 0.577 15.06 
tgrowingmax 18.85 0.0907 20.78 0.217 19.84 0.596 19.06*** 0.0937*** 0.512 20.94 
tgrowingmin 8.778 0.692 8.731 0.429 8.459 0.721 8.056*** 0.0557** 0.341 9.169 
dormantrain 194.6 0.430 246.0 9.574 302.3 94.74 239.6*** 6.196 0.095 363.5 
harvestrain 40.92 6.089 58.61 8.681 44.59 25.34 37.28*** 1.391 0.072 65.11 
Otago                 
tgrowing 14.49 0.763 14.96 0.501 14.52 0.811 14.13*** 0.0514*** 0.503 15.15 
tgrowingmax 21.00 1.376 22.52 1.123 21.65 1.410 20.97*** 0.0861*** 0.639 22.69 
tgrowingmin 7.997 0.154 7.393 0.135 7.395 0.366 7.285*** 0.0163 0.056 7.611 
dormantrain 130.9 40.58 124.8 52.82 161.1 70.54 140.2*** 2.385 0.069 187.9 
harvestrain 15.15 8.802 20.24 7.813 31.85 17.41 23.54*** 1.050 0.119 44.54 
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from Auckland, the northernmost wine region, to Otago, the southernmost wine region and, with 

the exception of Otago, the same is true for the average temperature. However, there is no 

similar ranking of the daily maximum temperature, and in fact the two warmest daily averages 

are for Auckland and Otago, the northernmost and the southernmost wine regions, respectively. 

All wine regions but Wairarapa have experienced a significant increase in the growing season 

average temperature of 0.04-0.07 degrees per year and the growing season maximum 

temperature of 0.07-0.09 degrees per year, while the minimum temperature has increased 

significantly in Auckland, Wairarapa and Canterbury only. Nelson that has experienced a mildly 

significant increase in the harvest rain but other rainfall variables have been stationary. This 

suggests that climate change in New Zealand, at the moment at least, is mostly manifested in the 

positive trend of the daily maximum temperature. 

 

Table 3: Summary statistics of wine scores by variety and region, including trend, for 2002, 2016 

and 2002-2016. 
  

2002 2016 2002-2016 Regression 
Scores by 
variety N mean sd N mean sd N mean sd Constant trend R2 

Pinot Noir 86 88.70 4.090 252 91.12 3.829 4,233 90.25 3.710 88.42*** 0.238*** 0.708 

Syrah 21 90.19 4.143 44 90.80 3.764 851 91.03 3.710 89.26*** 0.184** 0.334 

Chardonnay 105 88.31 3.520 178 90.81 3.870 2,518 89.94 3.642 88.28*** 0.243*** 0.866 

Merlot 37 86.59 3.295 19 88.32 3.801 484 88.11 3.464 86.84*** 0.167** 0.264 

Sauvignon Blanc 9 85.78 3.153 217 90.34 3.560 3,087 89.58 3.478 87.20*** 0.287*** 0.717 

Riesling 22 87.86 3.106 89 91.75 3.425 1,870 90.53 3.533 88.28*** 0.301*** 0.839 

Pinot Gris 5 88.40 4.099 131 89.82 3.098 1,778 89.73 3.257 88.44*** 0.149*** 0.583 

Total 285 88.23 3.777 930 90.68 3.683 14,821 90.01 3.606 88.19*** 0.235*** 0.812 

  2002 2016 2002-2016 Regression 
Scores by 
region N mean sd N mean sd N mean sd Constant trend R2 

Auckland 23 85.52 2.609 26 90.73 3.996 543 89.29 3.936 86.53*** 0.408*** 0.784 

Hawke's Bay 85 88.09 3.747 136 89.68 3.930 2,499 89.32 3.691 87.74*** 0.204*** 0.544 

Wairarapa 24 87.75 3.814 92 91.64 3.206 1,168 91.18 3.493 89.10*** 0.259*** 0.633 

Nelson 13 86.46 3.178 44 89.91 3.753 1,049 89.11 3.467 86.86*** 0.304*** 0.790 

Marlborough 76 88.93 3.649 409 90.21 3.680 5,949 89.85 3.538 88.56*** 0.164*** 0.544 

Canterbury 19 86.95 2.571 66 91.08 3.343 1,122 90.10 3.612 88.10*** 0.258*** 0.643 

Otago 45 90 4.051 157 92.26 3.187 2,491 91.02 3.339 88.95*** 0.260*** 0.829 

New Zealand 285 88.23 3.777 930 90.68 3.683 14,821 90.01 3.606 88.19*** 0.235*** 0.812 
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Table 3 shows the summary statistics of the wine scores by grape and by region in 2002, 

2016 and overall. It also shows the regression results where the annual average score per variety 

or per region, respectively, is regressed on the time trend. The coefficient for the trend variable 

measures the annual growth in the scores of the variety or the region, respectively.  The top half 

of the table shows that all grape varieties have experienced significant rating growth over our 

study period. The average wine in the dataset was rated at 90 points. The bottom half of the 

table shows that wines from all regions have grown in quality over the study period although the 

growth has been the slowest for the most important wine region in New Zealand in terms of size, 

Marlborough. 

 
Table 4: Number of wines in each category per variety and number of wine varieties scored per 
region, 2002-2016. 

Score Pinot 
Noir Syrah Chardonnay Merlot Sauvignon 

Blanc Riesling Pinot Gris Total 

83 10 2 13 3 2 1 3 34 
84 589 82 332 127 488 205 247 2070 
85 143 23 120 46 148 62 51 593 
86 60 14 52 10 51 29 27 243 
87 143 26 120 23 124 57 70 563 
88 71 12 77 12 55 26 32 285 
89 767 139 438 94 643 335 381 2797 
90 423 80 234 49 327 178 211 1502 
91 277 44 152 26 198 145 153 995 
92 526 110 343 40 418 287 273 1997 
93 288 75 176 21 193 125 125 1003 
94 213 34 106 9 129 82 67 640 
95 513 131 274 22 288 272 127 1627 
96 144 50 49 2 21 37 7 310 
97 48 23 25 0 2 18 2 118 
98 15 4 5 0 0 10 2 36 
99 3 2 1 0 0 1 0 7 
100 0 0 1 0 0 0 0 1 
Total 4233 851 2518 484 3087 1870 1778 14821 

Region Pinot 
Noir Syrah Chardonnay Merlot Sauvignon 

Blanc Riesling Pinot Gris Total 

Auckland 24 123 218 49 47 5 77 543 
Hawke's Bay 166 591 807 325 310 86 214 2499 
Wairarapa 508 35 147 2 175 165 136 1168 
Nelson 251 15 204 4 210 184 181 1049 
Marlborough 1412 62 823 99 2123 733 697 5949 
Canterbury 351 22 162 3 137 292 155 1122 
Otago 1521 3 157 2 85 405 318 2491 
New Zealand 4233 851 2518 484 3087 1870 1778 14821 
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Table 4 provides further background information about the sector by tabulating the 

scores for each variety as well as counting the varieties per region in the dataset. The top half of 

the table shows that just one wine7 received a score of 100 in the dataset and just seven wines 

have scored 99. The scores start at 83 and the mode of the wine scores is 89. The bottom half of 

Table 4 is useful for identifying the most important varieties for each region. In Auckland and 

Hawkes Bay these are Chardonnay and Syrah, but in Hawke’s Bay Merlot and Sauvignon Blanc 

are also important. Wairarapa and Nelson focus on Pinot Noir, Marlborough on Sauvignon Blanc 

and Pinot Noir and Canterbury and Otago on Pinot Noir and Riesling, but the other white varieties 

are also quite important for these five regions.  

Table 5 gives summary statistics on the wine prices in the dataset, for each variety and 

each region. Pinot Noir and Syrah are the two most expensive varieties in the dataset, followed 

by Chardonnay. The standard deviation is also the highest for these three varieties. While the 

bottom prices of these varieties are similar to the less expensive varieties, the top prices are 

much higher at $225 for Pinot Noir, $350 for Syrah and $175 for Chardonnay, compared to $75-

$100 for the other four varieties. 

 
Table 5: Summary statistics of wine prices by variety, 2002, 2016 and 2002-2016. 

  2002 2016 2002-2016 
Variety mean sd min max mean sd min max mean sd min max 
Pinot Noir 33.39 9.046 16 60 43.96 24.21 16 150 39.08 18.89 11.95 225 
Syrah 37.78 15.48 19.95 70 43.22 25.55 19.95 150 41.86 25.31 9.950 350 
Chardonnay 25.97 7.925 11.95 59.95 35.32 18.96 15 150 29.40 14.04 8.990 175 
Merlot 29.39 10.06 15.95 55 28.93 10.78 15.99 49.99 26.05 11.30 11.95 100 
Sauvignon Blanc 23.88 6.064 18.95 35.95 23.25 6.398 14 59.99 22.46 6.410 6.950 95 
Riesling 19.82 2.579 16 24.95 27.59 8.288 12.99 70 25.15 7.673 8.990 100 
Pinot Gris 23.22 9.339 15.95 33.75 23.68 6.271 13.99 60 24.32 6.180 9 75 
All 28.81 10.02 11.95 70 32.73 18.91 12.99 150 30.24 15.78 6.950 350 

 
  

                                                           
7 For those interested, this was the 2014 Moutere Chardonnay from the Neudorf Vineyard, located in the Nelson 
wine region. 
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3. Methodology and Models 
 

In this section we present the regression models that we use to test the validity of using 

the product-level dataset of Bob Campbell wine scores as a proxy of wine quality in climate 

change research. We use two models for six of the varieties, where the main explanatory variable 

of interest is the average temperature during the growing season. For Pinot Gris, we also report 

a third model where the key explanatory variable is the maximum temperature as this model 

explains the quality ratings of Pinot Gris better than the average temperature.  

When using product-level data, we use both OLS and product-level fixed-effects model. 

The definition of product is a single wine label. This means that many wineries have multiple 

products of a particular variety released each year.8 The models we estimate are all quadratic in 

the key temperature variable investigated to tease out the optimal temperature that is essential 

for climate-change research. In the first model we regress the wine score with the average 

growing-season temperature and its quadratic term, the total dormant-season rain and the 

harvest rain. The hypotheses here are that the score is a positive but concave function of the 

growing-season temperature, a positive function of the rain during the dormant season and a 

negative function of the rain that coincides with harvest. Equation (1) summarises Model 1: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝛽𝛽0  +  𝛽𝛽1𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +  𝛽𝛽2𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 +  𝛽𝛽4𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 + 𝛽𝛽5𝑆𝑆ℎ𝑟𝑟𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑡𝑡 +  𝑆𝑆.   (1) 

 

In Model 2, we add tgrowingdiff, the difference between the maximum and minimum 

temperatures, to replicate the work of Oczkowski (2016). Contrary to Oczkowski’s hypothesis 

that this term should have a negative sign, our hypothesis is that this term is positive for the cool-

climate varieties that are often said to benefit from cool night-time temperatures and warm 

daytime temperatures. In New Zealand, these varieties are Sauvignon Blanc, Pinot Noir and 

Riesling, judging by the revealed preference of what is grown in cooler climates. To keep our 

                                                           
8 For example, Felton Road Wines has 12 wine labels, or products, in the dataset, including four different labels of 
Chardonnay, five of Pinot Noir and three of Riesling, but not all of these were made and tasted each year 
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results comparable with Model 1, we also include rdormant, which is not included in Oczkowski. 

Equation (2) summarises model 2: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝛽𝛽0  +  𝛽𝛽1𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +  𝛽𝛽2𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 +  𝛽𝛽3𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽4𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 +

 𝛽𝛽5𝑆𝑆ℎ𝑟𝑟𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑡𝑡 +  𝑆𝑆.                                 (2) 

 

For Pinot Gris only, we also present findings from Model 3 where the variable tgrowing is 

replaced by tgrowingmax. We do this because this model best fits to explain the quality ratings 

of this variety:9 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝛽𝛽0  +  𝛽𝛽1𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡 +  𝛽𝛽2𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡2 +  𝛽𝛽3𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 +

𝛽𝛽4𝑆𝑆𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 + 𝛽𝛽5𝑆𝑆ℎ𝑟𝑟𝑆𝑆𝑎𝑎𝑆𝑆𝑎𝑎𝑡𝑡 +  𝑆𝑆.                            (3) 

 

We run each model with and without a trend variable. The trend variable is included in a 

small number of papers in the literature, including Ramirez (2008). Because global warming 

implies that, on the average, temperatures are on the rise, a trend variable could simply pick up 

the effect of temperature rising and thus introduce multicollinearity. Our results suggest that the 

trend variable is usually highly significant, improves the R2 values quite considerably and does 

not usually interfere with the sign and significance of the coefficient estimates for the 

temperature variables. Using of two models that are identical in other ways but the presence of 

the trend variable helps explain why studies that use a trend tend to have a higher R2 values than 

studies that do not.  

We have two further treatments that are meant to limit the sample to better-quality 

wines only that are more likely to be on the quality-possibilities frontier where we can with more 

confidence expect improvements in weather to improve wine quality. First, we include only wines 

that have had a price of at least $50 during the sample period for Pinot Noir, Syrah and 

                                                           
9 For space constraints, the results of this model are not presented for the other varieties for which it performed 
poorly. 
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Chardonnay, the most expensive varieties in New Zealand, and at least $30 for other varieties10. 

Second, we use the 2017 Suckling list of top-100 wines from New Zealand (Suckling, 2017), a list 

gathered by a critic independent from Bob Campbell, to limit our sample to all the available 

vintages of the wines that are on that list11. The top-100 treatment is used to study only the three 

varieties that feature more than twice on the Suckling list – Pinot Noir, Syrah and Chardonnay.  

Our last treatment is to “collapse” the product-level data by year, variety and region, 

inspired by a lot of the existing work that uses vintage ratings instead of ratings of individual 

wines but in the absence of readily available vintage ratings for New Zealand. This method gives 

us regional weather variables that are weighted averages of the variable values for the different 

weather station matched to the region’s wineries, where the weights are the number of wines 

associated with each station. The vintage model has the regional annual average rating of a 

variety as the independent factor and the regional average weather variables as explanatory 

factors.  

Because our models are quadratic, neither of the coefficients for the linear and quadratic 

terms used alone give us a clue about where we are in terms of climate change affecting wine 

quality. Expressing marginal effects calculated at current regional temperature is one way to 

understand whether the region has reached its optimal wine-growing weather for a variety or if 

the quality is still expected to rise with further increases in temperature. Marginal effects are 

found by taking the first-order differential of the rating equation (1), (2) or (3) with respect to the 

temperature variable and then inserting the current values of the temperature variable of 

interest into the derivative. For example, the marginal effect of Model 1 is: 

 

Marginal effect = 𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=  β 1 + 2β2𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.                    (4) 

 

                                                           
10 These dollar amounts are arbitrary cut-off points that aim to weigh the pros and cons of having only good wines 
included and not losing too many wines in the sample to lose statistical significance. We have tried a number of 
different cut-off points, and none performed better than this one. 
11 Only 84 of the Suckling top-100 wines are in our dataset. This is mostly because our exclusion of blended wines, 
which means that the highly-rated Bordeaux blends are not included. 
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While we expect to find a positive coefficient for the linear term, β 1, and a negative coefficient 

for the quadratic-term, β2, we have no hypothesis for the sign of the marginal effect. In fact, one 

of the main points of our research agenda is to identify this sign. If we have a positive marginal 

effect, the results indicate that we can expect wine scores to go up at least for the time being as 

temperatures rise, while a negative overall marginal effect indicates that the current 

temperature is already past the optimal level. 

Due to having a larger number of models and treatments as well as large variation in 

current temperature between different regions, we have opted to report the implied optimal 

temperature for each variety instead of reporting regional marginal effects. We can use (4) to 

calculate the expected optimal temperature, or the temperature where the marginal effect 

switches from positive to negative:  

    𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗ = − 𝛽𝛽1
2𝛽𝛽2

.              (5) 

 

This gives us an easy way to compare the current temperatures to our prediction of the optimal 

temperature. If the optimal temperature in (5) is larger than the current temperature in a given 

region, the marginal effect in (4) is positive, and we can expect the average quality of the wine 

to increase for the time being with further increases in temperature. Similarly, if the optimal 

temperature is below the current temperature in the region, the marginal effect is negative and 

we have already surpassed the point where climate change starts to deteriorate average wine 

quality for the given variety and region. After we discuss the main findings in Section 4, we discuss 

where the optimal temperatures for key varieties in each region are with respect to that region’s 

current temperature. 

 

4. Results and Discussion 
 

In this section, we report and discuss the results of our regression models. For each 

variety, we have two to three models, each with 10-14 different treatments. The full results are 

available in Appendix Tables 1-7. Here our focus is on summary results, found in Tables 6-8, 

where we present coefficient estimates and significance levels for the linear and quadratic 
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temperature variables, the R2 value of the regression and the predicted optimal temperature 

from (6). Table 6 presents the results for Pinot Noir, Syrah and Chardonnay, the varieties for 

which we report the results of 14 treatments because they include the top-100 treatments, 

Table 7 presents the results for Merlot, Sauvignon Blanc and Riesling for which we report the 

results of 10 treatments, while Table 8 presents the results for Pinot Gris for which we present 

the results of three models with 10 treatments each.  

In Tables 6-8, we have used colour codes to help the reader digest the results. The cells 

highlighted in grey are the ones that have results contrary to expectations in terms of the sign 

of the linear and quadratic temperature terms. The white cells indicate results that are 

consistent with expectations but the coefficients for the key temperature variables are not 

significant. The red cells indicate results that are consistent with expectations but they have 

insignificant coefficients with an optimal temperature prediction that is clearly not plausible. 

The green cells indicate that the coefficients are not only consistent with hypothesis but also 

significant – the darker the green the more significant the coefficients12. The purpose of this 

section is to learn what models and treatments work the best in giving us plausible results, how 

sensitive those results are to the treatments used and how these results vary between the 

seven varieties studied.  

We can see from Table 6 that out of the 12 treatments for Pinot Noir that use product-

level data, only one – the fixed effects model with trend for the full sample - gives us results 

that are consistent with theory, with statistically significant coefficients and a plausible optimal 

temperature values. However, we get great results with the constructed vintage data where 

results for both Models 1 and 2, with and without a trend, have significant coefficients and 

plausible predictions for optimal temperature. The vintage regressions also have significantly 

higher R2 value than any of the results with product-level data. The “green” and vintage results 

suggest that the optimal growing season average temperature for Pinot Noir is 13.99-15.50. 

The temperature difference variable in Model 2, where significant, is positive, which indicates 

                                                           
12 Dark green: either both terms are significant at 1% or one is significant at 1% and the other at 5%; Medium 
green: either both terms are significant at 5% or one is significant at 5% and the other at 10%; Light green: either 
both terms are significant at 10% or one is significant at 10% and the other is not significant. 
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that Pinot Noir improves in quality when the difference between the daily maximum and 

minimum temperatures grows. While this is against the hypothesis made by Oczkowski (2016), 

it is consistent with the understanding that cool-climate wines thrive with larger temperature 

differences. 

The Syrah results in Table 6 also show that the results are mostly inconsistent with 

hypothesis or consistent but insignificant. The only significant results for the product-level data 

are the OLS and OLS with trend results for Model 1 for wines above $50. When significant, the 

temperature difference variable in Model 2 is negative, which is consistent with this variety 

being a warm-climate variety. The best R2 values are found in the top-100 treatment, 

suggesting that the weather-quality relationship for Syrah is present the strongest with the best 

wines. The fact that the coefficients are not significant in these regressions is most likely due to 

having a small number of observations – we have just 61 observations over eight products.  

While for this variety the collapsed data does not give significant coefficients, the results have 

coefficient signs that are consistent with hypothesis and optimal temperature estimates that 

are plausible. The “green” and vintage results predict the optimal temperature to be 16.14-

17.08. This band is quite narrow, with the upper bound being two degrees less than that 

predicted by Jones (2015). We suspect that this reflects the style of the New Zealand Syrah 

being optimised for a cooler climate than what is the norm in many other wine regions. Thus, 

for regions where temperatures are higher than the optimal levels should be able to adapt the 

style of the wine to improve wine scores as temperatures rise. 

The results for Chardonnay in Table 6 are promising. Model 1 has significant coefficients 

with expected signs for all but the top-100 treatment, and Model 2 performs almost as well. 

Using the over $50 wines only improves the predictive power of the models. The temperature 

difference variable in Model 2, when significant, is always positive, which indicates that this is a 

cool-climate variety. The vintage data regressions have significant coefficients in one treatment 

only but all have coefficient signs that conform to hypotheses. The optimal temperature is 

predicted to be 15.32-17.87. Both the fact that this range is significantly higher than that for 

Pinot Noir and that Chardonnay is mostly grown in the north suggest that Chardonnay is a 

warm-climate variety, contradicting the earlier finding from the positive temperature difference 



 

 

21 

 

Table 6: Summary results for Pinot Noir, Syrah and Chardonnay. 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

  VARIABLES OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

  Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 

  tgrowing 1.162 1.738 0.886 3.988 -0.970 2.072 -4.860 -2.127 -13.12*** -12.42*** -5.783 -3.653 9.000** 5.060 

Pinot Noir tgrowingsq -0.0248 -0.0513 -0.00800 -0.143* 0.0503 -0.0588 0.200 0.0725 0.446*** 0.417*** 0.216 0.114 -0.300** -0.180* 

Model 1 R-squared 0.043 0.112 0.010 0.077 0.025 0.164 0.041 0.146 0.065 0.115 0.033 0.158 0.248 0.523 

  tgrowing* 23.39 16.95 55.38 13.99 9.652 17.61 12.18 14.66 14.73 14.88 13.41 16.01 14.98 14.02 

  tgrowing -3.104* 0.141 0.889 4.014* -5.207* 2.805 -4.883 -1.786 -15.51*** -11.75** -6.389 -4.017 10.62*** 6.090* 

Pinot Noir tgrowingsq 0.122** 0.00403 -0.00923 -0.141* 0.195* -0.0839 0.200 0.0654 0.525*** 0.395** 0.227 0.122 -0.343*** -0.208** 

Model 2 tgrowingdiff 0.257*** 0.0947*** 0.0648 -0.139 0.186*** -0.0306 0.0231 -0.279 0.0699 -0.0194 0.435 0.237 0.353*** 0.171 

  R-squared 0.056 0.114 0.010 0.077 0.034 0.164 0.041 0.148 0.068 0.115 0.041 0.160 0.312 0.537 

  tgrowing* 12.71 -17.51 48.18 14.21 13.35 16.71 12.21 13.65 14.77 14.88 14.09 16.48 15.50 14.62 

  tgrowing 4.627 3.081 -0.548 -1.613 12.55*** 10.73** -12.28 -12.96* 53.27 44.44 26.52 17.52 7.188 7.322 

Syrah tgrowingsq -0.129 -0.0867 0.0354 0.0516 -0.382*** -0.332** 0.407* 0.401* -1.628 -1.358 -0.796 -0.574 -0.210 -0.220 

Model 1 R-squared 0.031 0.054 0.018 0.037 0.044 0.075 0.037 0.087 0.261 0.270 0.143 0.319 0.122 0.253 

  tgrowing* 17.98 17.77 7.742 15.63 16.41 16.17 15.09 16.15 16.36 16.36 16.66 15.25 17.08 16.66 

  tgrowing 2.387 -0.569 -0.617 -1.529 7.560 4.253 -12.21 -12.91* 59.70 34.16 26.41 17.23 6.036 4.273 

Syrah tgrowingsq -0.0609 0.0232 0.0370 0.0495 -0.232 -0.137 0.397* 0.397* -1.865 -1.092 -0.800 -0.565 -0.177 -0.132 

Model 2 tgrowingdiff -0.123* -0.193*** 0.0548 -0.0760 -0.289*** -0.356*** 0.569 0.251 -0.585*** -0.690*** 0.550 -0.203 -0.112 -0.300** 

  R-squared 0.034 0.061 0.018 0.037 0.068 0.110 0.043 0.088 0.518 0.590 0.156 0.320 0.126 0.282 

  tgrowing* 19.59 12.26 8.328 15.45 16.29 15.48 15.38 16.25 16.01 15.64 16.51 15.25 17.04 16.14 

  tgrowing 3.133*** 2.569*** 6.122** 5.996** 9.441** 9.086** 16.97** 16.08** -0.998 -1.419 4.908 3.834 5.153 2.983 

Chardonnay tgrowingsq -0.0877** -0.079*** -0.179** -0.196** -0.272** -0.273** -0.491** -0.502** 0.0379 0.0460 -0.144 -0.139 -0.153 -0.0954 

Model 1 R-squared 0.012 0.087 0.013 0.042 0.050 0.224 0.079 0.206 0.010 0.071 0.008 0.089 0.040 0.519 

  tgrowing* 17.87 16.19 17.12 15.32 17.34 16.64 17.29 16.02 13.15 15.43 17.09 13.77 16.81 15.63 

  tgrowing 2.263 2.096* 5.930** 6.283** 15.70*** 13.16*** 14.07* 14.74* -1.144 -1.443 1.863 1.953 6.365** 3.190 

Chardonnay tgrowingsq -0.0582 -0.0630* -0.174** -0.204** -0.456*** -0.392*** -0.413* -0.465** 0.0457 0.0489 -0.0623 -0.0868 -0.186* -0.101 

Model 2 tgrowingdiff 0.167*** 0.0942*** 0.0677 -0.102 0.322*** 0.209** 0.787 0.369 0.184* 0.0897 0.858** 0.558 0.290*** 0.0404 

  R-squared 0.022 0.090 0.013 0.042 0.084 0.238 0.093 0.209 0.035 0.076 0.038 0.101 0.109 0.520 

  tgrowing* 19.45 16.64 17.08 15.42 17.20 16.77 17.03 15.86 12.52 14.76 14.95 11.26 17.10 15.79 
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variable. Jones (2015) suggests that the range of suitable climate for Chardonnay range from 

cool to warm climates, helping to reconcile this seeming inconsistency.  

The results for Merlot in Table 7 show that the product-level results and consistent with 

expectation for one treatment only – OLS for the wines that are over $30. The vintage results 

do not have significant coefficients but again give coefficients that have a sign consistent with 

hypothesis. The optimal temperature estimates from range from 16.63-18.74, which fit within 

the optimal temperature band of Jones (2015) that is approximately 61-66 degrees Fahrenheit 

(16.11-18.9 degrees Celsius). 

The results for Sauvignon Blanc in Table 7 show that the product-level data has great 

results for OLS with and without the trend for all the treatments, including the vintage 

regressions. Model 2 has consistently better explanatory power than Model 1 for this variety, 

and the coefficients for the difference variable are positive and highly significant, which is in 

line with this variety being a cool-climate variety that is grown mostly in the South Island. The 

explanatory power of the model improves when limiting the sample to wines of $30 or more 

and the best results are obtained with the vintage data. The “green” and vintage results predict 

an optimal temperature of 15.31-16.46 degrees. 

The results for Riesling in Table 7 show that there are only four product-level treatments 

that give plausible and significant results, all using OLS. However, all the vintage results are 

consistent with hypothesis, highly significant and have the highest R2 values. The “green” and 

vintage results predict the optimal temperature to be 14.52-16.06 degrees. The difference 

variable, when significant, is positive, consistent with Riesling being a cool-climate variety.  

Last, Table 8 shows the summary results for Pinot Gris where we have added the results 

of Model 3 where quality is modelled as a function of the average daily maximum temperature 

instead of average daily average temperature. As stated earlier, this model performs poorly for 

the other varieties but is very successful in predicting wine quality for Pinot Gris when using 

OLS. The vintage results are again the best. The prediction for the optimal maximum 

temperature is 20.54-22.26, and the predictions for the optimal average temperature from 

models 1-2 is 14.97-16.68. 
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Table 7: Summary results for Merlot, Sauvignon Blanc and Riesling 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
   OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
  VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
  tgrowing 7.447 1.995 -0.234 -2.159 17.01** 10.25 11.86 20.00 7.910 6.332 
Merlot tgrowingsq -0.213 -0.0536 0.0351 0.0756 -0.510** -0.313 -0.308 -0.589 -0.220 -0.174 
Model 1 R-squared 0.031 0.077 0.025 0.046 0.057 0.154 0.109 0.160 0.136 0.206 
  tgrowing* 17.52 18.62 3.333 14.28 16.66 16.39 19.24 16.98 17.95 18.18 
  tgrowing 7.347 0.580 -4.026 -4.868 18.90** 11.03 -10.93 -0.0262 7.115 3.853 
Merlot tgrowingsq -0.209 -0.0103 0.147 0.158 -0.568** -0.336 0.389 0.0283 -0.198 -0.103 
Model 2 tgrowingdiff -0.00565 -0.0724 0.832* 0.647 0.112 0.0431 1.859** 1.529 -0.0983 -0.260 
  R-squared 0.031 0.078 0.038 0.054 0.060 0.155 0.155 0.190 0.140 0.236 
  tgrowing* 17.54 28.27 13.69 15.45 16.63 16.39 14.06 0.462 18.00 18.74 
  tgrowing 14.34*** 11.76*** 1.174 5.807 25.65*** 24.16*** -10.52 11.51 9.286*** 7.728** 
Sauv Blanc tgrowingsq -0.451*** -0.381*** -0.0179 -0.191 -0.813*** -0.784*** 0.365 -0.383 -0.291*** -0.252** 
Model 1 R-squared 0.028 0.092 0.009 0.046 0.075 0.241 0.013 0.119 0.107 0.518 
  tgrowing* 15.88 15.43 32.83 15.19 15.77 15.40 14.42 15.01 15.95 15.31 
  tgrowing 10.71*** 9.562*** 0.593 5.447 22.32*** 22.35*** -10.17 12.91 11.22*** 8.727*** 
Sauv Blanc tgrowingsq -0.325*** -0.301*** -0.00189 -0.181 -0.698*** -0.718*** 0.355 -0.424 -0.349*** -0.282*** 
Model 2 tgrowingdiff 0.418*** 0.309*** 0.119 0.0718 0.561*** 0.349*** -0.0458 -0.168 0.282*** 0.136* 
  R-squared 0.079 0.118 0.009 0.046 0.179 0.276 0.013 0.120 0.177 0.533 
  tgrowing* 16.46 15.87 156.8 15.04 15.99 15.57 14.33 15.22 16.08 15.48 
  tgrowing 4.602** 6.485*** -0.880 4.314 6.207 9.035** -6.629 -0.772 21.00*** 14.63*** 
Riesling tgrowingsq -0.143** -0.215*** 0.0565 -0.143 -0.187 -0.291** 0.255 0.0218 -0.702*** -0.504*** 
Model 1 R-squared 0.019 0.128 0.023 0.082 0.026 0.116 0.033 0.173 0.241 0.694 
  tgrowing* 16.06 15.06 7.788 15.11 16.61 15.50 12.99 17.72 14.95 14.52 
  tgrowing -1.118 3.869* -1.004 4.202 1.613 6.974 -6.719 -0.903 18.68*** 14.24*** 
Riesling tgrowingsq 0.0541 -0.125* 0.0553 -0.142 -0.0305 -0.221 0.260 0.0286 -0.619*** -0.489*** 
Model 2 tgrowingdiff 0.391*** 0.168*** 0.261 0.164 0.265*** 0.110 -0.0724 -0.109 0.313*** 0.0730 
  R-squared 0.053 0.134 0.024 0.083 0.045 0.119 0.033 0.173 0.296 0.697 
  tgrowing* 10.34 15.54 9.076 14.78 26.46 15.79 12.93 15.77 15.10 14.56 
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Table 8: Summary results for Pinot Gris 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
   OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
  VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
  tgrowing 2.230* 2.178* -2.200 -1.781 1.857 2.871 1.948 2.665 2.639 2.282 
Pinot Gris tgrowingsq -0.0725* -0.0727* 0.0828 0.0549 -0.0478 -0.0839 -0.0366 -0.0765 -0.0815 -0.0745 
Model 1 R-squared 0.023 0.047 0.008 0.025 0.015 0.052 0.020 0.052 0.115 0.334 
  tgrowing* 15.39 14.97 13.29 16.21 19.41 17.12 26.62 17.42 16.20 15.33 
  tgrowing 1.543 1.665 -2.106 -1.608 1.278 2.460 1.039 1.618 3.772* 2.741 
Pinot Gris tgrowingsq -0.0452 -0.0521 0.0818 0.0528 -0.0252 -0.0680 0.00288 -0.0314 -0.113* -0.0871 
Model 2 tgrowingdiff 0.219*** 0.166*** -0.0950 -0.168 0.165* 0.0968 -0.475 -0.560 0.199* 0.0783 
  R-squared 0.040 0.056 0.008 0.026 0.025 0.056 0.025 0.060 0.150 0.339 
  tgrowing* 17.06 15.99 12.87 15.24 25.31 18.07 -180.4 25.80 16.68 15.73 
  tgrowingmax 4.757*** 5.639*** -4.009 -3.209 7.105** 8.552*** -3.309 -1.516 10.51** 11.38*** 
Pinot Gris tgrowingmaxsq -0.107** -0.131*** 0.102* 0.0754 -0.162** -0.200** 0.0886 0.0363 -0.251** -0.277*** 
Model 3 R-squared 0.041 0.057 0.009 0.026 0.034 0.067 0.015 0.050 0.184 0.381 
  tgrowingmax* 22.26 21.58 19.60 21.28 21.96 21.41 18.67 20.86 20.96 20.54 
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To summarise the results of Tables 6-8, 56% of our results are consistent with 

expectation and give a plausible optimal temperature and 27% are also significant when using 

product-level data. The white varieties do generally better than the red varieties in generating 

plausible results. This is in direct contrast to Sadras et al. (2007) who found significant results 

for the Australian red varieties but not the white ones. It is clear that there is no one model that 

always provides plausible results when using product-level data. The results for the red 

varieties are generally poor - Syrah and Merlot had their only plausible results for the 

treatments that limits the sample to wines above $50 and $30, respectively, but Pinot Noir had 

mildly significant results for the FE model with trend only. The white varieties tend to give the 

best results when using the OLS model. If just one model was chosen, then the OLS model has 

the most potential, despite the fact that it is not controlling for the underlying quality the way 

that the FE model is designed to do.  For Pinot Gris, the best results are obtained with the 

growing season maximum temperature, not the average temperature that works for the other 

varieties. Last, there seems to be a lot of merit in using a range of models and pick the ones 

that give plausible results, as we have done here, to allow for the fact that different varieties 

are best explained with a different model. 

The most consistently performing treatment across all varieties is the vintage treatment, 

where the product-level data is collapsed to vintage-level observations, where all results are 

consistent with expectation and 53% are statistically significant despite the small sample size. 

Moreover, the vintage treatment has the best results out of all treatments for Pinot Noir, 

Sauvignon Blanc, Riesling and Pinot Gris when judged by the significance of the key coefficients 

and the R2 score. The vintage treatment gives plausible results for the remaining varieties 

although not the best using the same criteria. We conclude that there is great potential in using 

vintage data constructed from expert-rating data for individual wines for climate change 

research. 

Last, we want to apply our predicted optimal temperatures to the current situation in 

New Zealand. Figure 1 takes the estimated variety-specific optimal temperature band for each 

variety from Tables 6-8 and compares it to the 2022 predicted temperature for each region 

from Table 2. The temperature band for each variety is the range of optimal temperature 
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values from the “green” and intage results. The vertical lines represent the forecasted 2022 

growing-season average temperatures for the wine regions, found in the last column of Table 2. 

 

 
Figure 1: Predicted growing season average temperatures for the wine regions and the optimal 
growing season temperature bands for each variety.13 

 

Figure 1 shows that Pinot Noir and Riesling have an optimal temperature range that fits well the 

current temperatures of Canterbury and Otago for which these are the most important 

varieties in the dataset. The current temperatures for these regions is at the bottom end of the 

optimal range for Pinot Gris. As the temperatures rise, these regions are likely to look at moving 

away from Pinot Noir production and towards producing more Pinot Gris, Sauvignon Blanc and 

Chardonnay. Marlborough’s climate is optimal for Riesling, Pinot Gris, Sauvignon Blanc and 

Chardonnay, but it is already too warm to have optimal conditions for Pinot Noir. For Nelson, 

Wairarapa and Hawkes’ Bay, the climate is already too warm for Pinot Noir and Riesling, and 

getting to be too warm for Sauvignon Blanc. Our results suggest that Pinot Gris, Chardonnay 

                                                           
13 AKL=Auckland; HB=Hawke’s Bay; WAI=Wairarapa; NEL=Nelson; MAR=Marlborough; CAN=Canterbury, 
OTA=Otago. 
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and Syrah would thrive in these regions, and the climate will very soon be optimal for Merlot. 

Given that Syrah and Merlot are currently produced predominantly in Hawke’s Bay, this 

suggests that the other two regions would have potential to successfully switch to these 

varieties, away from Pinot Noir, Riesling and Sauvignon Blanc. Last, our results indicate that 

Auckland’s average temperature is above the optimal range for all of the wine varieties 

considered here, possibly with the exception of Merlot that has an upper bound just below the 

2022 temperature in Auckland. According to the results of Jones (2015), Auckland should be 

able to successfully produce Cabernet Sauvignon and Zinfandel, for example. However, due to 

the small number of observations, these varieties were not included in our dataset so we are 

unable to verify this. There is also potential for Auckland’s Syrah to be successful if it is 

produced in a style more suitable for a warm climate. 

Figure 2 combines the results on the optimal maximum temperature for Pinot Gris from 

Table 8 and compares that to the 2022 predicted maximum temperature for each region from 

Table 2. The first thing to note is that the order of regions in terms of the maximum 

temperature is different from the average temperature. For example, Hawke’s Bay and 

Wairarapa, the second and third northernmost regions in our dataset, respectively, have the 

coolest maximum temperatures while their average temperatures sat second to only Auckland. 

 

Figure 2: Predicted growing season maximum temperatures for the wine regions and the 
optimal growing season maximum temperature band for Pinot Gris.14 

 

Because of this, the results in Figure 1 and Figure 2 are not fully aligned. The three regions that 

currently have the optimal maximum temperature for Pinot Gris – Canterbury, Nelson and 

                                                           
14 AKL=Auckland; HB=Hawke’s Bay; WAI=Wairarapa; NEL=Nelson; MAR=Marlborough; CAN=Canterbury, 
OTA=Otago. 
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Marlborough, were also included amongst the six regions that had the optimal average 

temperature for Pinot Gris in Figure 1. However, the maximum temperature in Otago is too 

high and in Hawke’s Bay and Wairarapa’s too low, suggesting that Pinot Gris is not a variety that 

should be planted in Otago and that it will become suitable for Hawke’s Bay and Wairarapa as 

their climates warm up. This change in the ranking of the two temperature variables between 

the regions explains why Models 1 and 2 did not fit very well with the data even though Model 

3 did, and that Figure 2 is most likely the more accurate of the two figures for Pinot Gris. 

 

5. Conclusion 
 

We used individual wine ratings from an extensive list wines rated by Bob Campbell in 

2002-2016 to investigate how suitable such a product-level dataset is for climate-change 

research. We investigated a function that linked the growing-season temperature to the wine 

quality separately for the seven most rated single-variety wines in the dataset. We had 10-14 

treatments for each variety to find out the treatments that provide plausible results. We used 

the best results to predict an optimal temperature band for each variety. We then compared 

these predictions to our predictions of the 2022 growing-season temperature to discuss how 

each region is situated now and in the near future to the varieties it is growing and what would 

be the most likely candidates for success as the climate continues to warm up. 

Our results suggest that, at least for New Zealand, the product-level data has the best 

success for the white varieties but only limited success for the red varieties. Out of the 

treatments that we tried, the OLS with and without the trend variable worked the best but it 

did not work for all varieties. This suggests a need to use a variety of models and treatments to 

find the best model for each variety to provide accurate temperature maximum predictions. 

We also found that there is great potential for the use of vintage data, even when specific 

vintage ratings are not available and the data is collapsed from the product-level data. This 

produced the best results out of all treatment for four varieties and plausible results, although 

not significant, for the other.   
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Our results contribute to the literature that has found that some varieties, or even 

regions, do not have a clear link between climate and quality. Examples of such studies include, 

amongst others, Oczkowski (2016) who found a convex relationship between weather and 

quality for Riesling and Semillon, and Jones et al. (2005), who found that the relationship 

between climate and the quality of wine is “less clear” for the New World wine regions than for 

the Old World wine regions. While none of our treatments worked for all varieties, with the 

exception of the vintage treatment, there were always some treatments for each variety that 

showed a clear positive, concave relationship between the growing season temperature or 

maximum temperature and the wine quality that had very plausible optimal temperature 

estimates. It is therefore possible that using a variety of regression models could identify the 

link between climate and quality for all varieties in all regions. 
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Appendix Table 1: Model 1 (top) and Model 2 (bottom) results for Pinot Noir 

Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing 1.162 1.738 0.886 3.988 -0.970 2.072 -4.860 -2.127 -13.12*** -12.42*** -5.783 -3.653 9.000** 5.060 

 (1.503) (1.346) (2.505) (2.428) (2.456) (2.330) (4.383) (4.148) (4.166) (3.981) (5.755) (5.389) (3.927) (3.080) 
tgrowingsq -0.0248 -0.0513 -0.00800 -0.143* 0.0503 -0.0588 0.200 0.0725 0.446*** 0.417*** 0.216 0.114 -0.300** -0.180* 

 (0.0509) (0.0455) (0.0826) (0.0803) (0.0812) (0.0773) (0.144) (0.137) (0.135) (0.129) (0.187) (0.176) (0.122) (0.0958) 
dormantrain -0.00360*** -0.00343*** 0.00118** 9.59e-05 -0.00114* -0.000608 0.00156* 0.000617 -0.000903 -0.000652 0.000691 0.000383 -0.00363** -0.00283** 

 (0.000417) (0.000402) (0.000459) (0.00045) (0.00063) (0.00061) (0.00081) (0.00077) (0.00092) (0.000930) (0.000926) (0.000867) (0.00176) (0.00136) 
harvestrain -0.00869*** -0.00928*** 0.000997 -0.000681 0.00323 0.00248 0.00609** 0.00235 0.00329 0.00210 0.00400 -0.000514 -0.00462 -0.00534 

 (0.00144) (0.00142) (0.00125) (0.00122) (0.00227) (0.00221) (0.00258) (0.00247) (0.00313) (0.00322) (0.00310) (0.00298) (0.00383) (0.00363) 
trend  0.256***  0.224***  0.283***  0.241***  0.151***  0.209***  0.277*** 

  (0.0144)  (0.0154)  (0.0230)  (0.0249)  (0.0387)  (0.0318)  (0.0400) 
Constant 80.09*** 75.45*** 78.26*** 60.93*** 96.59*** 73.24*** 120.2*** 106.6*** 190.3*** 184.9*** 131.4*** 121.3*** 24.01 53.99** 

 (11.10) (9.960) (18.96) (18.35) (18.58) (17.61) (33.25) (31.43) (32.16) (30.60) (44.11) (41.26) (31.15) (24.41) 
Observations 4,233 4,233 4,233 4,233 1,073 1,073 1,073 1,073 351 351 351 351 99 99 
R-squared 0.043 0.112 0.010 0.077 0.025 0.164 0.041 0.146 0.065 0.115 0.033 0.158 0.248 0.523 
tgrowing* 23.39 16.95 55.38 13.99 9.652 17.61 12.18 14.66 14.73 14.88 13.41 16.01 14.98 14.02 
Number of pr     1,306 1,306     309 309     55 55     
 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing -3.104* 0.141 0.889 4.014* -5.207* 2.805 -4.883 -1.786 -15.51*** -11.75** -6.389 -4.017 10.62*** 6.090* 

 (1.754) (1.514) (2.505) (2.428) (3.100) (2.822) (4.391) (4.153) (4.893) (4.726) (5.753) (5.406) (3.752) (3.097) 
tgrowingsq 0.122** 0.00403 -0.00923 -0.141* 0.195* -0.0839 0.200 0.0654 0.525*** 0.395** 0.227 0.122 -0.343*** -0.208** 

 (0.0596) (0.0514) (0.0827) (0.0803) (0.104) (0.0946) (0.144) (0.137) (0.160) (0.155) (0.187) (0.176) (0.116) (0.0958) 
tgrowingdiff 0.257*** 0.0947*** 0.0648 -0.139 0.186*** -0.0306 0.0231 -0.279 0.0699 -0.0194 0.435 0.237 0.353*** 0.171 

 (0.0348) (0.0351) (0.118) (0.114) (0.0591) (0.0547) (0.208) (0.198) (0.0703) (0.0717) (0.276) (0.260) (0.113) (0.107) 
dormantrain -0.00112** -0.00253*** 0.00121*** 2.11e-05 0.000567 -0.000882 0.00158* 0.000401 -0.000321 -0.000810 0.00104 0.000579 -0.000592 -0.00141 

 (0.000530) (0.000528) (0.000462) (0.000453) (0.000786) (0.000742) (0.000820) (0.000782) (0.00106) (0.00105) (0.000950) (0.000893) (0.00197) (0.00166) 
harvestrain -0.00664*** -0.00851*** 0.00113 -0.000989 0.00566** 0.00207 0.00615** 0.00163 0.00437 0.00178 0.00493 6.23e-05 -0.00449 -0.00524 

 (0.00146) (0.00146) (0.00128) (0.00124) (0.00241) (0.00233) (0.00263) (0.00252) (0.00348) (0.00350) (0.00315) (0.00304) (0.00359) (0.00354) 
trend  0.244***  0.226***  0.287***  0.246***  0.153***  0.205***  0.259*** 

  (0.0151)  (0.0155)  (0.0239)  (0.0252)  (0.0407)  (0.0320)  (0.0422) 
Constant 107.0*** 85.57*** 77.73*** 61.88*** 124.6*** 68.35*** 120.2*** 106.5*** 207.1*** 180.2*** 133.0*** 122.4*** 4.482 42.66* 

 (12.69) (10.95) (18.98) (18.36) (22.62) (20.65) (33.28) (31.41) (36.87) (35.50) (44.01) (41.28) (29.92) (24.91) 
Observations 4,233 4,233 4,233 4,233 1,073 1,073 1,073 1,073 351 351 351 351 99 99 
R-squared 0.056 0.114 0.010 0.077 0.034 0.164 0.041 0.148 0.068 0.115 0.041 0.160 0.312 0.537 
tgrowing* 12.71 -17.51 48.18 14.21 13.35 16.71 12.21 13.65 14.77 14.88 14.09 16.48 15.50 14.62 
Number of pr     1,306 1,306     309 309     55 55     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 2: Model 1 (top) and Model 2 (bottom) results for Syrah 

 

  Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing 4.627 3.081 -0.548 -1.613 12.55*** 10.73** -12.28 -12.96* 53.27 44.44 26.52 17.52 7.188 7.322 

 (2.994) (3.000) (5.453) (5.412) (4.736) (4.841) (7.433) (7.260) (43.01) (41.87) (26.92) (24.38) (6.057) (6.019) 
tgrowingsq -0.129 -0.0867 0.0354 0.0516 -0.382*** -0.332** 0.407* 0.401* -1.628 -1.358 -0.796 -0.574 -0.210 -0.220 

 (0.0908) (0.0907) (0.169) (0.168) (0.141) (0.145) (0.230) (0.224) (1.352) (1.315) (0.855) (0.773) (0.186) (0.183) 
dormantrain -9.61e-05 0.000931 0.00152 0.00160 0.00270 0.00321* 0.000538 0.000286 0.00595* 0.00622* 0.00284 0.00225 0.00329 0.00439** 

 (0.00120) (0.00122) (0.00104) (0.00103) (0.00169) (0.00172) (0.00149) (0.00145) (0.00333) (0.00351) (0.00198) (0.00179) (0.00210) (0.00208) 
harvestrain -0.00999*** -0.00861*** -0.00302 -0.00318 -0.00873** -0.00727 0.000140 -0.000634 -0.0108 -0.0102 -0.00734 -0.00492 -0.00880* -0.00847 

 (0.00254) (0.00258) (0.00209) (0.00208) (0.00431) (0.00442) (0.00345) (0.00337) (0.0109) (0.0109) (0.00563) (0.00512) (0.00514) (0.00513) 
trend  0.155***  0.119***  0.148***  0.159***  0.0764  0.251***  0.245*** 

  (0.0352)  (0.0361)  (0.0559)  (0.0489)  (0.101)  (0.0713)  (0.0665) 
Constant 50.68** 62.83** 90.01** 102.0** -9.686 4.870 184.8*** 196.3*** -342.3 -270.9 -126.5 -41.39 28.49 26.38 

 (24.55) (24.65) (43.90) (43.65) (39.33) (40.14) (60.14) (58.82) (342.5) (333.2) (211.9) (192.3) (48.97) (49.03) 
               
Observations 851 851 851 851 292 292 292 292 61 61 61 61 77 77 
R-squared 0.031 0.054 0.018 0.037 0.044 0.075 0.037 0.087 0.261 0.270 0.143 0.319 0.122 0.253 
tgrowing* 17.98 17.77 7.742 15.63 16.41 16.17 15.09 16.15 16.36 16.36 16.66 15.25 17.08 16.66 
Number of pr     309 309     93 93     8 8     
Model 2  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing 2.387 -0.569 -0.617 -1.529 7.560 4.253 -12.21 -12.91* 59.70 34.16 26.41 17.23 6.036 4.273 
 (3.328) (3.348) (5.469) (5.426) (5.134) (5.530) (7.428) (7.274) (36.90) (31.36) (26.99) (24.63) (6.314) (6.304) 
tgrowingsq -0.0609 0.0232 0.0370 0.0495 -0.232 -0.137 0.397* 0.397* -1.865 -1.092 -0.800 -0.565 -0.177 -0.132 
 (0.101) (0.101) (0.170) (0.168) (0.153) (0.165) (0.230) (0.225) (1.164) (0.988) (0.857) (0.780) (0.193) (0.191) 
tgrowingdiff -0.123* -0.193*** 0.0548 -0.0760 -0.289*** -0.356*** 0.569 0.251 -0.585*** -0.690*** 0.550 -0.203 -0.112 -0.300** 
 (0.0728) (0.0736) (0.283) (0.283) (0.102) (0.106) (0.507) (0.507) (0.0772) (0.0809) (0.637) (0.619) (0.127) (0.134) 
dormantrain -0.000467 0.000454 0.00151 0.00161 0.00148 0.00180 0.000357 0.000214 0.00167 0.00173 0.00291 0.00220 0.00264 0.00279 
 (0.00122) (0.00123) (0.00105) (0.00104) (0.00163) (0.00162) (0.00150) (0.00146) (0.00278) (0.00245) (0.00199) (0.00181) (0.00218) (0.00221) 
harvestrain -0.0102*** -0.00884*** -0.00293 -0.00331 -0.00894** -0.00725* 0.000654 -0.000382 -0.00692 -0.00431 -0.00711 -0.00491 -0.00872* -0.00820 
 (0.00252) (0.00255) (0.00215) (0.00213) (0.00425) (0.00438) (0.00347) (0.00342) (0.00649) (0.00558) (0.00565) (0.00516) (0.00515) (0.00506) 
trend  0.170***  0.121***  0.176***  0.154***  0.231**  0.260***  0.277*** 
  (0.0358)  (0.0365)  (0.0565)  (0.0501)  (0.0938)  (0.0771)  (0.0685) 
Constant 70.23** 94.55*** 90.30** 101.8** 34.23 61.63 182.2*** 194.8*** -378.0 -168.9 -128.3 -37.60 39.63 55.78 
 (27.59) (27.80) (43.96) (43.70) (42.99) (46.27) (60.14) (59.01) (293.0) (248.7) (212.4) (194.5) (51.78) (52.11) 
               
Observations 851 851 851 851 292 292 292 292 61 61 61 61 77 77 
R-squared 0.034 0.061 0.018 0.037 0.068 0.110 0.043 0.088 0.518 0.590 0.156 0.320 0.126 0.282 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 



 

 

35 

 

Appendix Table 3: Model 1 (top) and Model 2 (bottom) results for Chardonnay 

 Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing 4.932*** 3.742*** 6.122** 5.996** 9.441** 9.086** 16.97** 16.08** -0.998 -1.419 4.908 3.834 4.668 2.748 

 (1.341) (1.297) (2.708) (2.669) (4.465) (4.103) (7.762) (7.234) (3.206) (3.157) (6.839) (6.585) (3.484) (2.366) 
tgrowingsq -0.143*** -0.116*** -0.179** -0.196** -0.272** -0.273** -0.491** -0.502** 0.0379 0.0460 -0.144 -0.139 -0.139 -0.0883 

 (0.0423) (0.0409) (0.0853) (0.0841) (0.136) (0.125) (0.237) (0.221) (0.0983) (0.0967) (0.217) (0.208) (0.108) (0.0732) 
dormantrain -0.0016*** -0.000767 0.00156*** 0.00111** -0.00485*** -0.00268* 0.00183 0.00177 -0.00113 -0.000486 -0.000161 -0.000289 -0.000231 0.000872 

 (0.000551) (0.000533) (0.000565) (0.000561) (0.00158) (0.00147) (0.00149) (0.00139) (0.00136) (0.00140) (0.00143) (0.00138) (0.00147) (0.00109) 
harvestrain -0.00308** -0.00303** -0.00203* -0.00240** -0.00188 -0.00148 -0.00639 -0.00756** 0.00162 0.00194 -0.000985 -0.00218 -0.00225 -0.00327 

 (0.00144) (0.00139) (0.00120) (0.00118) (0.00406) (0.00380) (0.00391) (0.00365) (0.00367) (0.00345) (0.00382) (0.00369) (0.00365) (0.00236) 
trend  0.241***  0.133***  0.335***  0.242***  0.146***  0.174***  0.306*** 

  (0.0169)  (0.0189)  (0.0540)  (0.0519)  (0.0554)  (0.0485)  (0.0294) 
Constant 48.89*** 58.70*** 37.53* 43.02** 14.88 17.01 -52.22 -36.83 100.9*** 104.0*** 52.90 67.45 51.52* 66.70*** 

 (10.60) (10.26) (21.48) (21.19) (36.49) (33.44) (63.45) (59.21) (25.94) (25.53) (53.90) (52.01) (27.79) (18.95) 
Observations 2,518 2,518 2,518 2,518 217 217 217 217 177 177 177 177 105 105 
R-squared 0.013 0.087 0.013 0.042 0.050 0.224 0.079 0.206 0.010 0.071 0.008 0.089 0.034 0.517 
tgrowing* 17.20 16.18 17.12 15.32 17.34 16.64 17.29 16.02 13.15 15.43 17.09 13.77 16.84 15.56 
Number of pr     859 859     77 77     27 27     
 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
Treatment all all all all >=$50 >=$50 >=$50 >=$50 top100 top100 top100 top100 vintage vintage 
tgrowing 5.734*** 4.263*** 5.930** 6.283** 15.70*** 13.16*** 14.07* 14.74* -1.144 -1.443 1.863 1.953 6.077* 2.908 

 (1.321) (1.288) (2.743) (2.704) (4.066) (4.026) (7.972) (7.474) (3.165) (3.147) (6.909) (6.704) (3.267) (2.400) 
tgrowingsq -0.165*** -0.130*** -0.174** -0.204** -0.456*** -0.392*** -0.413* -0.465** 0.0457 0.0489 -0.0623 -0.0868 -0.178* -0.0927 

 (0.0417) (0.0406) (0.0862) (0.0850) (0.123) (0.122) (0.242) (0.227) (0.0969) (0.0962) (0.218) (0.211) (0.101) (0.0739) 
tgrowingdiff 0.206*** 0.119*** 0.0677 -0.102 0.322*** 0.209** 0.787 0.369 0.184* 0.0897 0.858** 0.558 0.269*** 0.0266 

 (0.0336) (0.0337) (0.153) (0.153) (0.0919) (0.0830) (0.531) (0.507) (0.0940) (0.0856) (0.404) (0.404) (0.0908) (0.0859) 
dormantrain 0.000468 0.000403 0.00156*** 0.00110** -0.00237 -0.00117 0.00166 0.00169 0.000340 0.000157 -0.000137 -0.000262 0.00220 0.00110 

 (0.000643) (0.000629) (0.000565) (0.000561) (0.00158) (0.00147) (0.00149) (0.00140) (0.00140) (0.00132) (0.00142) (0.00137) (0.00169) (0.00142) 
harvestrain -0.00302** -0.00300** -0.00195 -0.00252** -0.00200 -0.00158 -0.00544 -0.00708* 0.00282 0.00249 0.000244 -0.00127 -0.00185 -0.00322 

 (0.00144) (0.00139) (0.00121) (0.00120) (0.00395) (0.00375) (0.00394) (0.00371) (0.00372) (0.00349) (0.00382) (0.00373) (0.00354) (0.00233) 
trend  0.230***  0.135***  0.319***  0.235***  0.129**  0.157***  0.303*** 

  (0.0173)  (0.0191)  (0.0537)  (0.0529)  (0.0542)  (0.0498)  (0.0334) 
Constant 38.87*** 52.42*** 38.64* 41.44* -41.86 -19.92 -32.58 -28.07 98.73*** 102.6*** 72.04 78.54 35.49 64.95*** 

 (10.50) (10.25) (21.63) (21.32) (33.50) (33.18) (64.55) (60.52) (25.86) (25.70) (54.02) (52.46) (26.27) (19.55) 
Observations 2,518 2,518 2,518 2,518 217 217 217 217 177 177 177 177 105 105 
R-squared 0.026 0.091 0.013 0.042 0.084 0.238 0.093 0.209 0.035 0.076 0.038 0.101 0.092 0.518 
tgrowing* 17.37 16.45 17.08 15.42 17.20 16.77 17.03 15.86 12.52 14.76 14.95 11.26 17.10 15.68 
Number of pr     859 859     77 77     27 27     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 4: Model 1 (top) and Model 2 (bottom) results for Merlot 

 Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

Treatment all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 7.447 1.995 -0.234 -2.159 17.01** 10.25 11.86 20.00 7.910 6.332 

 (5.176) (5.195) (10.01) (9.952) (8.081) (7.902) (21.83) (21.70) (6.100) (5.852) 
tgrowingsq -0.213 -0.0536 0.0351 0.0756 -0.510** -0.313 -0.308 -0.589 -0.220 -0.174 

 (0.160) (0.159) (0.313) (0.310) (0.248) (0.242) (0.680) (0.678) (0.190) (0.182) 
dormantrain 0.00166 0.00253* 0.00217 0.00212 0.00107 0.00261 0.00548 0.00592* -0.00469* -0.00518* 

 (0.00143) (0.00148) (0.00178) (0.00176) (0.00235) (0.00237) (0.00331) (0.00325) (0.00279) (0.00308) 
harvestrain 0.000380 -1.23e-05 0.00211 0.00161 -0.00602 -0.00701 0.000281 -0.000730 -0.00680 -0.00964 

 (0.00297) (0.00297) (0.00299) (0.00297) (0.00500) (0.00516) (0.00548) (0.00538) (0.00591) (0.00632) 
trend  0.189***  0.124**  0.270***  0.192**  0.146** 

  (0.0399)  (0.0523)  (0.0659)  (0.0916)  (0.0703) 
Constant 22.62 67.57 81.54 101.3 -51.11 4.027 -23.80 -82.94 20.23 33.09 

 (41.79) (42.05) (80.22) (79.93) (65.46) (64.02) (175.3) (173.7) (48.79) (46.85) 
Observations 484 484 484 484 157 157 157 157 54 54 
R-squared 0.031 0.077 0.025 0.046 0.057 0.154 0.109 0.160 0.136 0.206 
tgrowing* 17.52 18.62 3.333 14.28 16.66 16.39 19.24 16.98 17.95 18.18 
Number of pr     226 226     80 80     
 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
Treatment all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 7.347 0.580 -4.026 -4.868 18.90** 11.03 -10.93 -0.0262 7.115 3.853 

 (5.383) (5.489) (10.16) (10.11) (8.485) (8.337) (24.26) (24.73) (6.234) (6.221) 
tgrowingsq -0.209 -0.0103 0.147 0.158 -0.568** -0.336 0.389 0.0283 -0.198 -0.103 

 (0.166) (0.169) (0.317) (0.315) (0.261) (0.255) (0.753) (0.770) (0.194) (0.192) 
tgrowingdiff -0.00565 -0.0724 0.832* 0.647 0.112 0.0431 1.859** 1.529 -0.0983 -0.260 

 (0.0895) (0.0936) (0.443) (0.449) (0.162) (0.163) (0.932) (0.939) (0.155) (0.159) 
dormantrain 0.00161 0.00186 0.00150 0.00160 0.00181 0.00288 0.00290 0.00373 -0.00512* -0.00645** 

 (0.00181) (0.00185) (0.00181) (0.00180) (0.00264) (0.00257) (0.00350) (0.00348) (0.00275) (0.00289) 
harvestrain 0.000383 5.45e-06 0.00323 0.00254 -0.00587 -0.00695 0.00354 0.00211 -0.00622 -0.00879 

 (0.00297) (0.00297) (0.00303) (0.00303) (0.00503) (0.00517) (0.00562) (0.00560) (0.00601) (0.00616) 
trend  0.193***  0.109**  0.268***  0.161*  0.181*** 

  (0.0401)  (0.0533)  (0.0653)  (0.0925)  (0.0670) 
Constant 23.49 79.95* 107.4 119.0 -67.74 -2.738 149.2 68.68 28.09 56.95 

 (43.78) (44.81) (81.00) (80.70) (69.36) (68.16) (192.5) (195.3) (50.36) (50.76) 
Observations 484 484 484 484 157 157 157 157 54 54 
R-squared 0.031 0.078 0.038 0.054 0.060 0.155 0.155 0.190 0.140 0.236 
tgrowing* 17.54 28.27 13.69 15.45 16.63 16.39 14.06 0.462 18 18.74 
Number of pr     226 226     80 80     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 5: Model 1 (top) and Model 2 (bottom) results for Sauvignon Blanc 

 Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 14.34*** 11.76*** 1.174 5.807 25.65*** 24.16*** -10.52 11.51 9.286*** 7.728** 

 (1.827) (1.813) (4.234) (4.186) (4.929) (4.882) (18.29) (17.77) (3.482) (3.100) 
tgrowingsq -0.451*** -0.381*** -0.0179 -0.191 -0.813*** -0.784*** 0.365 -0.383 -

 
-0.252** 

 (0.0583) (0.0576) (0.137) (0.136) (0.155) (0.153) (0.596) (0.580) (0.109) (0.0973) 
dormantrain -

 
-

 
0.000485 1.79e-06 -

 
-

 
0.000262 -

 
-0.00112 0.000166 

 (0.000455) (0.000443) (0.000439
 

(0.000434
 

(0.00107) (0.00101) (0.00110
 

(0.00104) (0.00136) (0.000994
 harvestrain -

 
-

 
-0.00181 -0.00220* -0.00232 -0.00795** -0.00191 -0.00407 -0.00151 -0.00287 

 (0.00128) (0.00122) (0.00114) (0.00112) (0.00457) (0.00404) (0.00400
 

(0.00381) (0.00365) (0.00227) 
trend  0.246***  0.166***  0.403***  0.267***  0.292*** 

  (0.0170)  (0.0184)  (0.0443)  (0.0490)  (0.0355) 
Constant -22.56 -1.450 75.64** 44.43 -108.5*** -95.67** 167.1 3.765 15.69 28.02 

 (14.31) (14.22) (32.75) (32.32) (39.28) (38.85) (140.2) (136.1) (27.66) (24.45) 
Observations 3,087 3,087 3,087 3,087 421 421 421 421 99 99 
R-squared 0.028 0.092 0.009 0.046 0.075 0.241 0.013 0.119 0.107 0.518 
tgrowing* 15.88 15.43 32.83 15.19 15.77 15.40 14.42 15.01 15.95 15.31 
Number of 

 
    977 977     170 170     

 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 10.71*** 9.562*** 0.593 5.447 22.32*** 22.35*** -10.17 12.91 11.22*** 8.727*** 

 (1.911) (1.856) (4.298) (4.252) (4.853) (4.625) (18.54) (18.04) (3.654) (3.225) 
tgrowingsq -0.325*** -0.301*** -0.00189 -0.181 -0.698*** -0.718*** 0.355 -0.424 -

 
-0.282*** 

 (0.0612) (0.0591) (0.138) (0.137) (0.152) (0.145) (0.602) (0.587) (0.114) (0.101) 
tgrowingdiff 0.418*** 0.309*** 0.119 0.0718 0.561*** 0.349*** -0.0458 -0.168 0.282*** 0.136* 

 (0.0305) (0.0310) (0.151) (0.148) (0.0767) (0.0700) (0.368) (0.349) (0.0981) (0.0691) 
dormantrain 0.000427 -4.08e-05 0.000536 3.39e-05 0.000368 -0.000378 0.000235 -

 
0.00205 0.00163 

 (0.000482) (0.000479) (0.000444
 

(0.000439
 

(0.00104) (0.00101) (0.00112
 

(0.00106) (0.00150) (0.00114) 
harvestrain -0.00283** -

 
-0.00153 -0.00203* 0.00165 -0.00446 -0.00205 -0.00456 -0.00114 -0.00263 

 (0.00126) (0.00122) (0.00119) (0.00117) (0.00436) (0.00400) (0.00415
 

(0.00395) (0.00363) (0.00228) 
trend  0.199***  0.166***  0.331***  0.269***  0.279*** 

  (0.0176)  (0.0184)  (0.0454)  (0.0491)  (0.0352) 
Constant -2.375 9.470 79.53** 46.84 -92.72** -88.15** 164.6 -6.302 -4.381 17.83 

 (14.89) (14.51) (33.12) (32.71) (38.70) (36.96) (142.0) (137.9) (29.32) (25.53) 
Observations 3,087 3,087 3,087 3,087 421 421 421 421 99 99 
R-squared 0.079 0.118 0.009 0.046 0.179 0.276 0.013 0.120 0.177 0.533 
tgrowing* 16.46 15.87 156.8 15.04 15.99 15.57 14.33 15.22 16.08 15.48 
Number of 

 
    977 977     170 170     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 6: Model 1 (top) and Model 2 (bottom) results for Riesling 

 Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 4.602** 6.485*** -0.880 4.314 6.207 9.035** -6.629 -0.772 21.00*** 14.63*** 

 (2.134) (1.899) (4.272) (4.183) (4.372) (4.266) (10.90) (10.13) (4.555) (3.160) 
tgrowingsq -0.143** -0.215*** 0.0565 -0.143 -0.187 -0.291** 0.255 0.0218 -0.702*** -0.504*** 

 (0.0721) (0.0644) (0.141) (0.138) (0.145) (0.141) (0.361) (0.336) (0.147) (0.102) 
dormantrain -0.00203*** -0.00148*** 0.00212*** 0.00112* -0.000722 -0.000282 0.00144 0.000262 -0.00137 -0.000171 

 (0.000584) (0.000556) (0.000630) (0.000621) (0.000978) (0.000953) (0.00120) (0.00113) (0.00169) (0.00109) 
harvestrain -0.00440** -0.00463** -0.00238 -0.00295* 0.00167 0.00267 0.00120 -0.00111 0.00100 -0.00221 

 (0.00193) (0.00181) (0.00169) (0.00164) (0.00351) (0.00332) (0.00357) (0.00332) (0.00422) (0.00240) 
trend  0.314***  0.207***  0.255***  0.302***  0.360*** 

  (0.0209)  (0.0235)  (0.0394)  (0.0425)  (0.0325) 
Constant 54.80*** 40.38*** 90.29*** 56.32* 41.91 20.90 134.0 97.13 -65.88* -17.74 

 (15.81) (14.04) (32.37) (31.62) (32.98) (32.20) (82.17) (76.30) (35.06) (24.42) 
Observations 1,870 1,870 1,870 1,870 478 478 478 478 94 94 
R-squared 0.019 0.128 0.023 0.082 0.026 0.116 0.033 0.173 0.241 0.694 
tgrowing* 16.06 15.06 7.788 15.11 16.61 15.50 12.99 17.72 14.95 14.52 
Number of pr     661 661     174 174     
 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing -1.118 3.869* -1.004 4.202 1.613 6.974 -6.719 -0.903 18.68*** 14.24*** 

 (2.364) (2.070) (4.271) (4.185) (4.420) (4.515) (10.92) (10.15) (4.819) (3.318) 
tgrowingsq 0.0541 -0.125* 0.0553 -0.142 -0.0305 -0.221 0.260 0.0286 -0.619*** -0.489*** 

 (0.0801) (0.0704) (0.141) (0.138) (0.147) (0.150) (0.362) (0.337) (0.157) (0.107) 
tgrowingdiff 0.391*** 0.168*** 0.261 0.164 0.265*** 0.110 -0.0724 -0.109 0.313*** 0.0730 

 (0.0484) (0.0475) (0.183) (0.178) (0.0866) (0.0842) (0.340) (0.315) (0.116) (0.0690) 
dormantrain 0.00149** -1.64e-05 0.00222*** 0.00119* 0.00168 0.000690 0.00140 0.000204 0.00173 0.000526 

 (0.000699) (0.000687) (0.000634) (0.000626) (0.00121) (0.00121) (0.00122) (0.00114) (0.00207) (0.00132) 
harvestrain -0.00226 -0.00369** -0.00181 -0.00259 0.00347 0.00336 0.000945 -0.00150 0.00166 -0.00198 

 (0.00194) (0.00183) (0.00174) (0.00169) (0.00355) (0.00339) (0.00377) (0.00351) (0.00418) (0.00244) 
trend  0.288***  0.206***  0.241***  0.302***  0.352*** 

  (0.0220)  (0.0235)  (0.0407)  (0.0425)  (0.0328) 
Constant 90.22*** 56.82*** 89.40*** 55.99* 71.50** 34.33 135.2 98.89 -54.46 -16.14 

 (17.21) (15.03) (32.36) (31.63) (32.70) (33.53) (82.49) (76.58) (36.35) (25.26) 
Observations 1,870 1,870 1,870 1,870 478 478 478 478 94 94 
R-squared 0.053 0.134 0.024 0.083 0.045 0.119 0.033 0.173 0.296 0.697 
tgrowing* 10.34 15.54 9.076 14.78 26.46 15.79 12.93 15.77 15.10 14.56 
Number of pr     661 661     174 174     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 7: Model 1 (top) and Model 2 (middle) and Model 3 (bottom) results for Pinot Gris 

 Model 1 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 

VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 2.230* 2.178* -2.200 -1.781 1.857 2.871 1.948 2.665 2.639 2.282 

 (1.226) (1.157) (2.921) (2.898) (1.815) (1.816) (4.736) (4.673) (2.292) (1.959) 
tgrowingsq -0.0725* -0.0727* 0.0828 0.0549 -0.0478 -0.0839 -0.0366 -0.0765 -0.0815 -0.0745 

 (0.0398) (0.0376) (0.0932) (0.0926) (0.0582) (0.0584) (0.149) (0.148) (0.0740) (0.0618) 
dormantrain -0.0021*** -0.0019*** 0.00111* 0.000915 -0.00053 -0.00032 -0.00007 -0.00027 -0.0032** -0.00283** 

 (0.000553) (0.000548) (0.000610 (0.000607) (0.0011) (0.00113) (0.0012) (0.00118) (0.00130) (0.00127) 
harvestrain -0.00433** -0.0055*** -0.00283* -0.0036** -0.00115 -0.00298 -0.00271 -0.00493 -0.00441 -0.00592** 

 (0.00172) (0.00168) (0.00167) (0.00166) (0.0038) (0.00380) (0.0036) (0.00361) (0.00339) (0.00279) 
trend  0.146***  0.119***  0.182***  0.144***  0.193*** 

  (0.0227)  (0.0265)  (0.0473)  (0.0489)  (0.0420) 
Constant 73.81*** 73.45*** 103.7*** 103.0*** 74.84*** 66.34*** 70.69* 68.19* 69.87*** 72.30*** 

 (9.455) (8.919) (22.89) (22.70) (14.14) (14.13) (37.54) (37.00) (17.71) (15.34) 
Observations 1,778 1,778 1,778 1,778 374 374 374 374 102 102 
R-squared 0.023 0.047 0.008 0.025 0.015 0.052 0.020 0.052 0.115 0.334 
tgrowing* 15.39 14.97 13.29 16.21 19.41 17.12 26.62 17.42 16.20 15.33 
Number of pr     603 603     114 114     
 Model 2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowing 1.543 1.665 -2.106 -1.608 1.278 2.460 1.039 1.618 3.772* 2.741 

 (1.198) (1.150) (2.928) (2.906) (1.812) (1.811) (4.790) (4.718) (2.069) (1.847) 
tgrowingsq -0.0452 -0.0521 0.0818 0.0528 -0.0252 -0.0680 0.00288 -0.0314 -0.113* -0.0871 

 (0.0389) (0.0374) (0.0932) (0.0927) (0.0583) (0.0584) (0.152) (0.150) (0.0670) (0.0585) 
tgrowingdiff 0.219*** 0.166*** -0.0950 -0.168 0.165* 0.0968 -0.475 -0.560 0.199* 0.0783 

 (0.0398) (0.0413) (0.195) (0.194) (0.0847) (0.0856) (0.390) (0.385) (0.105) (0.102) 
dormantrain -0.000271 -0.000527 0.00106* 0.000826 0.000822 0.000459 -0.00028 -0.00052 -0.00142 -0.00214 

 (0.000668) (0.000673) (0.00062) (0.000616) (0.0014) (0.00138) (0.0012) (0.00119) (0.00161) (0.00169) 
harvestrain -0.00327* -0.0045*** -0.00303* -0.0040** 0.000570 -0.00184 -0.00344 -0.00586 -0.00410 -0.00574** 

 (0.00172) (0.00171) (0.00172) (0.00172) (0.0039) (0.00387) (0.0036) (0.00366) (0.00338) (0.00283) 
trend  0.123***  0.121***  0.169***  0.149***  0.185*** 

  (0.0234)  (0.0265)  (0.0478)  (0.0490)  (0.0431) 
Constant 74.78*** 74.25*** 103.5*** 102.7*** 75.98*** 67.62*** 80.53** 79.72** 57.26*** 67.25*** 

 (9.215) (8.834) (22.90) (22.71) (14.05) (14.01) (38.37) (37.76) (15.95) (14.49) 
Observations 1,778 1,778 1,778 1,778 374 374 374 374 102 102 
R-squared 0.040 0.056 0.008 0.026 0.025 0.056 0.025 0.060 0.150 0.339 
tgrowing* 17.06 15.99 12.87 15.24 25.31 18.07 -180.4 25.80 16.68 15.73 
Number of pr     603 603     114 114     
 Model 3 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 OLS OLS trend FE FE trend OLS OLS trend FE FE trend OLS OLS trend 
VARIABLES all all all all >=$30 >=$30 >=$30 >=$30 vintage vintage 
tgrowingmax 4.757*** 5.639*** -4.009 -3.209 7.105** 8.552*** -3.309 -1.516 10.51** 11.38*** 

 (1.759) (1.720) (2.488) (2.474) (3.217) (3.242) (4.462) (4.429) (4.316) (3.840) 
tgrowingmaxsq -0.107** -0.131*** 0.102* 0.0754 -0.162** -0.200** 0.0886 0.0363 -0.251** -0.277*** 

 (0.0426) (0.0417) (0.0599) (0.0597) (0.0774) (0.0781) (0.106) (0.106) (0.106) (0.0947) 
dormantrain -0.00146*** -0.00174*** 0.00124** 0.000946 0.00110 0.000538 0.000200 -0.000149 -0.00242** -0.00296*** 

 (0.000561) (0.000562) (0.00061) (0.00061) (0.0011) (0.00113) (0.0012) (0.00119) (0.00111) (0.000976) 
harvestrain -0.00408** -0.0053*** -0.00303* -0.0040** 0.000899 -0.00111 -0.00269 -0.00494 -0.00360 -0.00549** 

 (0.00169) (0.00167) (0.00168) (0.00168) (0.0036) (0.00360) (0.00360) (0.00362) (0.00320) (0.00261) 
trend  0.128***  0.120***  0.175***  0.152***  0.188*** 

  (0.0235)  (0.0264)  (0.0481)  (0.0495)  (0.0431) 
Constant 38.11** 29.21* 128.5*** 122.7*** 13.77 -0.929 122.2*** 106.6** -19.08 -26.78 

 (18.08) (17.65) (25.83) (25.65) (33.28) (33.53) (46.86) (46.38) (44.04) (38.87) 
Observations 1,778 1,778 1,778 1,778 374 374 374 374 102 102 
R-squared 0.041 0.057 0.009 0.026 0.034 0.067 0.015 0.050 0.184 0.381 
tgrowingmax* 22.26 21.58 19.60 21.28 21.96 21.41 18.67 20.86 20.96 20.54 
Number of pr     603 603     114 114     

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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