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Transactions Costs and the Equity Premium Puzzle

1 Introduction

In a seminal paper, Campbell and Cochrane (1999b) show that incorporating habit forma-

tion in a standard asset pricing model can successfully replicate many observed features of

stock returns and thus largely resolve the equity premium puzzle of Mehra and Prescott

(1985). However, their steady state solution requires relative risk aversion equal to 35,

which seems implausibly high. As Cochrane (2016) points out:

Our model really does not solve the equity premium puzzle. The equity premium

puzzle as now distilled includes the equity premium, the market Sharpe ratio,

a low and stable risk-free rate, realistic consumption growth volatility, with

a positive discount factor δ and low risk aversion. We have everything but

low risk aversion. So far no model has achieved a full solution of the equity

premium puzzle as stated. (Cochrane, 2016, Page 7)

In this paper, I reexamine the equity premium puzzle by incorporating transactions

costs into the Campbell and Cochrane’s habit formation model. The objective is to

determine whether the incorporation of such costs can sufficiently reduce the required

level of relative risk aversion while at the same time retaining the main properties of

Campbell and Cochrane (e.g., high equity premium, low riskless rate, and the market

Sharpe ratio).

Transactions costs associated with holding a well diversified portfolio have been high

during the last century (McGrattan and Prescott, 2001, 2003; Jones, 2002), so they

should not be ignored. The particular costs I focus on are fund diversification costs

and dividend income taxes. In reality, investor pays taxes not only on dividend income,

but also on capital gains. In order to examine the effects of capital gain taxes on equity

prices in a model, I need to estimate marginal tax rate that applies to a marginal investor.

However, estimating the marginal capital gain tax rate is a challenging task due to data
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unavailability (McGrattan and Prescott, 2003). Therefore, I focus on dividend income

taxes and consider it as conservative (lower bound) estimate for tax costs.

This study consists of three steps. I first estimate average fund diversification costs

and average marginal dividend income tax rates over the 1947–1995 period.1 Then, I

incorporate these costs into the budget constraint of Campbell and Cochrane’s habit

model and solve for equity prices (e.g., price consumption ratio). Lastly, I calibrate

the utility curvature parameter to match the observed historical Sharpe ratio of 0.43

and examine whether incorporation of the fund diversification costs and dividend income

taxes can solve the puzzle.

I find that the utility curvature parameter of 0.36 successfully replicates the key

features, such as the equity premium, low riskless interest rate, and the market Sharpe

ratio. More importantly, in this model, when the utility curvature parameter is 0.36, the

steady state relative risk aversion becomes 15 which is much smaller than what is implied

in the original work of Campbell and Cochrane.

The paper closest to mine is McGrattan and Prescott (2003). They argue that the

difference between taxes and costs adjusted equity returns (less than 5%) and the av-

erage returns on US long-term debt assets (almost 4%) is less than 1%, and therefore,

there is no equity premium puzzle. However, their study and mine are different in several

ways. Rather than focusing on the difference between the observed average market eq-

uity returns and transactions costs, I numerically solve Campbell and Cochrane’s habit

formation model with transactions costs and characterize model predictions of equity

prices. Instead of using long-term bonds, I use 90-day US treasury bill rate as riskless

interest rate, which is consistent with Mehra and Prescott and Campbell and Cochrane.

Furthermore, I calibrate a model parameter not only to explain the large equity premium,

but also to explain high stock market returns volatilities.

In the next section, I outline the transactions costs incorporated habit model. Then,

Section 3 and Section 4 present equity price estimation and simulation results respectively,

and Section 5 discusses investor relative risk aversion. Finally, Section 6 concludes the

1I obtain the datasets from Professor McGrattan’s webpage, http://users.econ.umn.edu/~erm/

research.php.
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paper.

2 The Model

Following Campbell and Cochrane (1999b), I assume that investors have a power utility

function, where utility is derived from the difference between consumption and a slowly

adjusting consumption habit. That is:

u(Ct) =
(Ct −Xt)

1−γ − 1

1− γ

where Ct is consumption at time t, Xt is consumption threshold (habit consumption),

and γ > 0 is the relative risk aversion coefficient. Infinitely-lived investors maximize their

lifetime utility by choosing optimal level of consumption and investment each period.

maximize
Ct, Zt+1

E

[
t=∞∑
t=0

δtu(Ct)

]

subject to Ct + Zt+1Pt ≤ ZtPt(1− fc) + ZtYt(1− τd)

(1)

where δ > 0 is the subjective time discount factor and γ > 0 is the utility curvature

parameter. Zt and Yt in the budget constraint are household risky asset holdings and

dividend income respectively. Ct is consumption at time t and Pt is the price of risky

asset at time t. Investors in this economy are required to pay fc fraction of fees relative

to the value of risky assets when rebalancing the risky asset holdings at the end of each

period t. In addition to the fund diversification cost, fc, investors are also required to

pay dividend income tax, τd.

Let

St ≡
Ct −Xt

Ct
(2)

denote the consumption surplus ratio, which is an indicator of the economy’s state. For

example, St = 0.02 implies that the consumption at time t is 2% above the consumption

threshold, Xt. Therefore, low St represents a ‘hungrier’ state and high St denotes a ‘good’
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economic state.

The processes of log consumption surplus ratio (e.g., st = ln(St)) and log normally

distributed consumption growth are defined as:

ln (St+1) = (1− φ) ln
(
S̄
)

+ φ ln (St) + λ (ln (St)) νt+1 (3)

ln

(
Ct+1

Ct

)
≈ ∆ct+1 = ḡ + νt+1 where νt+1 ∼ NIID(0, σ2

c ) (4)

where S̄ is the steady state consumption surplus ratio (unconditional mean of St), φ is

consumption persistency coefficient, ∆ct+1 is lnCt+1 - lnCt, and λ (ln (St)) is investors’

sensitivity to consumption shocks. As in equation (4), the log consumption grows at a

constant rate, ḡ, with homoskedastic innovations, νt+1. Plase note that all logs in this

paper are natural logs.

Equation (5) shows the local coefficient of relative risk aversion (ηt) of this economy.

ηt = −CtuCC (Ct)

uC (Ct)
=

γ

St
(5)

It indicates that local relative risk aversion is the inverse of St. Investor becomes very

risk-averse when consumption is close to the habit level.

λ(ln(St)) =


1
S̄

√
1− 2

(
ln(St)− ln(S̄)

)
− 1 if St ≤ Smax

0 if St ≥ Smax

(6)

S̄ =

√
γσ2

1− φ
(7)

ln(Smax) = ln(S̄) +
1

2
(1− S̄2) (8)

Lastly, the equations (6), (7) and (8) present the reverse engineered consumption

shock sensitivity function, λ (ln (St)), steady state consumption surplus ratio, S̄, and log

maximum consumption surplus ratios, ln(SMax), respectively. The sensitivity function

decreases with St. It implies that investors become more and more anxious about con-

sumption shocks as the consumption level gets close to the habit level, and therefore, this
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is what creates a counter-cyclical precautionary savings demand.

The pricing equation in this economy is given by

1 = E

[
Mt+1

Pt+1(1− fc) + Yt+1(1− τd)
Pt

]
= E [Mt+1Rt+1] (9)

where Mt+1 = δ
uC(Ct+1)

uC(Ct)
= δ

(
St+1

St

)−γ (
Ct+1

Ct

)−γ
.

Rt+1, in equation (9), is after cost (fund diversification costs and dividend income taxes)

returns and Mt+1 is stochastic discount factor. Equation (10) shows the log riskless

interest rate in this economy. Counter-cyclical variations in precautionary savings demand

cancel out intertemporal substitution effect, making the riskless interest constant.

rf,t = − ln(δ) + γḡ −
(γ
S̄

)2 σ2
c

2
for St ≤ SMax (10)

3 Price-Consumption Ratio and Expected Returns

In this section, I consider stocks as a claim to the consumption stream. Because con-

sumption surplus ratio is the only state variable in this economy, the price-consumption

ratio should be a function of st = ln(St). The price consumption ratio, Pt/Ct, should

satisfy the condition

Pt
Ct

(st) = E

[
Mt+1

Ct+1

Ct

(
(1− fc)

Pt+1

Ct+1

(st+1) + 1− τd
)]

. (11)

The price-consumption ratios in equation (11) does not have a closed-form solution, so

I numerically solve them using a fixed-point method over a grid of values for st.
2 Given

the price-consumption ratio calculated from equation (11), I compute expected before

and after costs returns for each state st.

The conditional expected after cost returns, Et[Rt+1], is the difference between the

2I use 301 grid points, which is much finer than the 17 grid points used in Campbell and Cochrane
(1999b). The 301 grid points consists of 300 equally spaced intervals over [0.001, SMax] plus S̄. Different
set of grids yield noticeably different price-consumption ratios, but it has no effect on riskless interest
rates, and has only a marginal effect on Sharpe ratio. See Wachter (2005) for detail.
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expected before cost returns, Et[R̃t+1], and the expected relative costs, Et[Lt+1]. All three

terms can also be written as a function of the consumption surplus ratio:

E [Rt+1 (st+1) |st] = E

[
Pt+1 (1− fc) + Ct+1 (1− τd)

Pt

∣∣∣∣st]
= E

[
R̃t+1 (st+1)− Lt+1 (st+1) |st

]
(12)

where

Rt+1 (st+1|st) =
Ct+1

Ct

(
(1− fc)Pt+1

Ct+1
(st+1) + (1− τd)

)
Pt

Ct
(st)

R̃t+1 (st+1|st) =
Pt+1 + Ct+1

Pt
=
Ct+1

Ct

(
1 + Pt+1

Ct+1
(st+1)

)
Pt

Ct
(st)

Lt+1 (st+1|st) =
Pt+1fc + Ct+1τd

Pt
= fc

Ct+1

Ct

Pt+1

Ct+1
(st+1)

Pt

Ct
(st)

+ τd
Ct+1/Ct
Pt

Ct
(st)

Once the price-consumption ratios have been computed from equation (11), the esti-

mates for conditional expected before and after costs returns as well as expected relative

costs in equation (12) are straightforward.

The expected relative costs have two parts. The first component is fcPt+1/Pt, mea-

sured by the fund diversification costs (fcPt+1) relative to Pt. The latter component

is τdCt+1/Pt, measured by dividend income taxes (τdCt+1) relative to Pt. Given the

independent and identically distributed consumption growth, the expected relative divi-

dend income tax costs can be expressed as E[Lt+1(st+1)|st] = (τd/(Pt/Ct))E[Ct+1/Ct] =

(τde
ḡ+0.5σ2

c )/(Pt/Ct). It implies that if expected stock returns are counter-cyclical (e.g.,

low equity price during recessions and vice versa), the expected relative dividend income

tax costs would also be counter-cyclical. The conditional expected relative fund diver-

sification costs at the steady state is fce
ḡ+0.5σ2

c . However, for st 6= s̄, the conditional

expected relative fund diversification costs cannot be further simplified.

In order to numerically solve the price-consumption ratios in equation (11), it is

necessary to choose parameter values. Table 1 presents four sets of model parameters.

The first four values are Campbell and Cochrane’s consumption and real log riskless
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Table 1: Parameter Choices

Parameter Variable Value

Consumption and Riskless Interest Rate Variables:

Mean consumption growth (%)* ḡ 1.89

Standard deviation of consumption growth (%)* σc 1.50

Consumption Persistency coefficient* φ 0.87

Log riskless interest rate (%)* rf 0.94

Fund Costs and Dividend Tax (1947-1995 period):

Fund Diversification Cost (%)* fc 2.16

Marginal Dividend Income Tax Rates (%) τd 38.23

Calibrated Utility Curvature Parameter:

Utility curvature γ 0.36

Model Implied Variables:

Subjective discount factor* δ 0.97

Steady-state consumption surplus ratio S̄ 0.024

Maximum consumption surplus ratio Smax 0.040

Steady State Relative Risk Aversion γ/S̄ 14.88

* parameter values are annualized, e.g., 12ḡ,
√

12σc, 12rf , φ12, δ12 and 12fc.

interest rate estimates. They estimate these parameter values from 1946–2017 US annual

data. The next two rows presents the average annualized fund diversification costs and

the average marginal dividend income taxes estimated from the same time periods. I

estimate the corresponding quantities from Professor McGrattan’s dataset. The next

row shows the calibrated utility curvature parameter, γ. I calibrate γ = 0.36 to match

the historical market Sharpe ratio of 0.43. The last four rows present the model implied

parameter values.

Given the parameter values in Table 1, I first compute the price-consumption ratios in

equation (11). I then calculate the before and after costs expected log returns, E[ln(R̃t+1)]

and E[ln(Rt+1)] respectively. I also estimate expected log relative costs, E[ln(Lt+1)], as

well as log riskless interest rate, rf = ln(Rf ) for each state, st.

Figure 1 presents the expected before and after costs consumption claim log returns

and the riskless interest rates. When consumption gets close to the habit level (St → 0),

conditional expected returns rise dramatically (and hence risk premium). Not surpris-

ingly, before costs expected log returns are always greater than after costs expected log

returns. The difference between the two would provide close approximation for Lt+1 in

equation (12). Perhaps it is not very clear from Figure 1, the difference between the
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Figure 1: Expected before/after Fund Costs and Tax Log Returns and Log Riskless Rate

This figure presents the annualized expected fund costs and tax adjusted log returns, E[ln(R̃t+1)] and

expected cost unadjusted log returns, E[ln(Rt+1)]. It also presents constant log riskless interest rates,

ln(Rf ).

two lines monotonically decreases as St rises. For example, expected Lt+1 decreases from

6.46% for St = 0.001 to 3.98% for St = SMax. In other words, an investor requires more

return for bearing the costs during recessions than during booms.

4 Simulation

To examine the model predictions for asset returns with the costs, I simulate 1,000,000

months of artificial data and calculate descriptive statistics for various variables. Table 2

shows the implications of the model for equity returns with and without the costs. The

first column presents simulation results reported in Campbell and Cochrane. The second

column presents my simulation results of the habit model with the costs. The last column
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Table 2: Simulation Results

This table presents various statistics calculated from 1,000,000 simulated artificial data. The model is
simulated at a monthly frequency and the statistics are converted into annualized values. The first column
presents simulation results reported in Campbell and Cochrane (1999b). The second column presents
simulation results when both the fund costs and taxes are incorporated into the model. The last column
presents the corresponding (annualized) descriptive statistics estimated from the U.S. historical data for

1947–1999 period. Note that r̃M = ln(R̃M ), rM = ln(RM ), and rf = ln(Rf ).

Variable Campbell and Cochrane My Results Data

Parameter Values:

fc (%) 0 2.16 2.16

τd (%) 0 38.23 38.23

γ 2 0.36

γ/S̄ 35.08 14.88

Simulation Results:

E[rf ] (%) 0.94 0.92 0.94

E[r̃M − rf ] (%) 6.64 6.73 6.69

σ(r̃M − rf ) (%) 15.2 15.58 15.7

E[r̃M − rf ]/σ(r̃M − rf ) 0.43 0.43* 0.43

E[R̃M −Rf ]/σ(R̃M −Rf ) 0.50 0.50 0.50

exp
(
E
[
log
(
P
C

)])
18.3 18.5 24.7

σ
(
log
(
P
C

))
0.27 0.28 0.26

* I calibrate the utility curvature parameter, γ, to replicate the Sharpe ratio of 0.43.

shows the corresponding statistics estimated from US historical data over the 1947–1995

period. All the descriptive statistics in Table 2 are annualized.

In the first column, with the calibrated utility curvature parameter γ = 2, Campbell

and Cochrane successfully explains (1) the large equity premium, (2) low riskless interest

rate and (3) the market Sharpe ratio, but their solution requires high relative risk aversion.

The required steady state relative risk aversion is 35.

The second column presents my simulation results of the model with the costs. I

calibrate the risk aversion parameter γ = 0.36 to match the historical market Sharpe

ratio of 0.43. I find that the model with costs can also successfully explain (1) the equity

premium, (2) low riskless interest rate and (3) and the market Sharpe ratio, but with

much smaller steady state relative risk aversion of 14.88.3

3It is noteworthy that when γ becomes smaller, the average simulated riskless interest rates goes
slightly below the target riskless interest rate of 0.94%. See Appendix for detail.
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5 Relative Risk Aversion

Campbell and Cochrane show that the local coefficient of relative risk aversion (ηt) in

equation (5) and wealth based relative risk aversion (rrat) are not the same in this

economy. When relative risk aversion is measured as investor’s attitudes toward pure

wealth bets, rrat would depend on the curvature of investor’s value function. The value

function, V (Wi,t,Wa,t, Sa,t), depends on investor i’s wealth, Wi,t, and on other aggregate

economic variables, Wa,t and Sa,t. By applying the Envelope condition uC = VW , rrat

can be written as a function of the local coefficient of relative risk aversion:

rrat = −WVWW

VW
= ηt

∂ lnCt
∂ lnWt

(13)

As equation (13) suggests, when rrat is defined from the value function, rrat and ηt

are not the same in this economy. rrat > ηt would occur if consumption rises more than

proportionally to an increase in individual wealth (e.g., ∂ lnC
∂ lnW

> 1). In Campbell and

Cochrane where γ = 2, they find ∂ lnC
∂ lnW

> 1, and therefore rrat > ηt for every economic

state, St.

Intuitively, an increase in investor’s wealth leads to an increase in consumption over

habit, and this increase will reduce investor’s demand for precautionary savings, making a

further increase in consumption. Therefore, consumption can rise more than proportion-

ally to an increase in individual wealth. Numerically, Campbell and Cochrane find that

at the steady state, rrat is about twice greater than ηt. Furthermore, rrat varies dramat-

ically over economic business cycles: rrat increases to several hundreds as Ct approaches

to the habit level, Xt.
4

Interestingly, the low γ = 0.36 implied by the steady-state solution with transactions

costs generates (1) very stable rrat over economic business cycles and (2) rrat < ηt for

low St. Figure 2 illustrates the behaviours of the local relative risk aversion (ηt) and

relative risk aversion (rrat) for Campbell and Cochrane’s habit formation model with

transactions costs.

4See Section 4 of Campbell and Cochrane (1999a) for detail.
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Figure 2: Relative Risk Aversion (rrat) and Local Relative Risk Aversion (ηt)

First of all, compared to rrat in Campbell and Cochrane’s economy without transac-

tions costs (where γ = 2), rrat in Figure 2 is much low and stable. Both ηt and rrat are

about 15 at the steady state. Stability of rrat is largely related to a smaller γ. Equation

(13) suggests that var(rrat) is directly proportional to γ2. Reducing γ from 2 to 0.36

lowers var(rrat) by a factor of about 30. Therefore, smaller γ due to the incorporation of

transactions costs not only provides lower level of relative risk aversion at the steady state,

but also provides much more stable investor relative risk aversion. In other words, the

model with transactions costs can explain countercyclical stock market returns without

having very large fluctuations in rrat.

Secondly, I find that rrat < ηt for low St. This puzzling finding can also be explained

by low γ. Low St means that consumption, Ct, is chosen to be close to the habit level,

Xt. With low γ (e.g., γ = 0.36), the investor would not have very strong desire to smooth

consumption, and he would still find investment more attractive than consumption at low
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St. So, if the investor gets more wealth, he would not spend all of it on extra consumption

(e.g., ∂ lnC
∂ lnW

< 1). By contrast, the more risk averse investor (γ = 2) would have much

stronger desire for consumption smoothing and would be a lot less happy about low St.

So, any extra wealth he gets would be devoted entirely to consumption. This explains the

different behaviours of rrat in Campbell and Cochrane and the economy with transactions

costs.

6 Conclusion

I find the incorporation of fund diversification costs and dividend income taxes into

Campbell and Cochrane’s habit model can not only successfully explain (1) the equity

premium, (2) low riskless interest rate and (3) and the market Sharpe ratio, but also

require much lower and stable relative risk aversion than what is implied in the original

work of Campbell and Cochrane.

Then, is the equity premium puzzle solved? Unfortunately, no. I find that incor-

porating the observed level of fund diversification costs and dividend income taxes can

reduce the required level of relative risk aversion from 35 to 15 (about a 58% reduction).

However, the steady state relative risk aversion of 15 seems still quite high. Hence, I

conclude that the incorporation of costs and taxes can reduce the equity premium puzzle

substantially, but it does not completely solve the puzzle.
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Appendix. Fragile Riskless Interest Rates

One of the key achievements in Campbell and Cochrane (1999b) is that their model can

match the low and constant riskless interest rates. The equation (A.1) shows the riskless

interest rate in their model. The riskless interest rate is constant when St < SMax, but

it starts to decrease as St goes beyond SMax. When St is above SMax, the intertemporal

substitution effects dominate the precautionary savings demand, making riskless rate

decreasing.

rf,t+1 =

 − ln(δ) + γḡ −
(
γ
S̄

)2 σ2
c

2
if St ≤ SMax

− ln(δ) + γḡ − γ(1− φ)(ln(St)− ln(S̄))− γ2σ2
c

2
if St ≥ SMax

(A.1)

Is St > SMax possible? Very unlikely but possible. Because log consumption growth

is normally distributed without bounds, a realization of a very large consumption growth

shock, νt+1, can push St above SMax. Equation (A.2) shows the probability of St > SMax

at any given St−1.

Pr(St ≥ SMax|St−1) = Pr

(
νt ≥

1

λ(ln(St−1))

[
1

2

(
1− S̄2

)
− φ
(

ln(St−1)− ln(S̄)
)] ∣∣∣∣St−1

)
(A.2)

Note that the consumption growth shock is normally distributed with zero mean and

homoskedastic variance (e.g., νt ∼ NIID(0, σ2
C)) and that both the sensitivity function,

λ(ln(St)), and S̄ are a function of γ. Therefore, the probability in equation (A.2) is also

a function of γ. The probability of having St > SMax (and hence rf,t+1 <0.94%) will rise

as the utility curvature parameter, γ, decreases.

To see the relationship between the probability of St > SMax and γ closely, I evaluate

the equation (A.2) at St−1 = S̄ (probability of economy reaching above SMax today when

the economy was at the steady state yesterday). The equation (A.3) suggests that if the

economy receives consumption growth shock 1
2

(
σcγ
1−φ +

√
γ

1−φ

)
standard deviation above

from the mean, the economy will eventually be at St > SMax. This clearly shows that

the likelihood of reaching St > SMax increases as γ decreases.
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Pr(St ≥ Smax|St−1 = S̄) = Pr

(
νt
σc
≥ 1

2

(
σcγ

1− φ
+

√
γ

1− φ

) ∣∣∣∣St−1 = S̄

)
= Pr

(
zt ≥

1

2

(
σcγ

1− φ
+

√
γ

1− φ

) ∣∣∣∣St−1 = S̄

)
(A.3)

where zt ∼ NIID(0, 1)

For the given parameter values in Table 1 and when γ = 2, 1
2

(
σcγ
1−φ +

√
γ

1−φ

)
≈ 6.96.

This implies that when the economy is at the steady state at time t− 1, St will be above

SMax, if the consumption growth shock is drawn 6.96 standard deviation above from the

mean. On the other hand, when γ = 0.36, 1
2

(
σcγ
1−φ +

√
γ

1−φ

)
≈ 2.86. The probability of

Pr (zt+1 > 6.96) and Pr (zt+1 > 2.86) are 1.72× 10−12 and 2.11× 10−3 respectively.
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