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Systematic Liquidity Risk Premia

1 Introduction

Several studies show that illiquidity affects asset prices not only as a direct cost (Amihud

and Mendelson, 1986; Brennan and Subrahmanyam, 1996; Jones, 2002) but also as a sys-

tematic risk factor (Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005; Amihud,

2014). In an important contribution, Acharya and Pedersen develop a liquidity-adjusted

capital asset pricing model (henceforth LCAPM) in which systematic liquidity risks affect

expected returns. In the LCAPM, the overall beta equals the sum of the the standard

beta and three liquidity betas: (i) β2 – the covariation between firm-specific liquidity

costs and market liquidity costs, (ii) β3 – the (negative) covariation between firm stock

returns and market liquidity costs, and (iii) β4 – the (negative) covariation between firm

liquidity costs and market returns. The intuition for these additional betas is that volatil-

ity in future liquidity costs introduces an additional element of risk to future net stock

returns which, if correlated with net market returns, adds to a stock’s systematic risk and

hence to its risk premium. Using 1964-99 US stock market data, Acharya and Pedersen

estimate that the expected return premium associated with (i)–(iii) is 0.16%, 0.08%, and

0.82% respectively, from which they conclude that β4 is easily the most important source

of liquidity risk.

As Acharya and Pedersen (2005) point out (p.398): “This liquidity risk (β4) has not

been studied before either theoretically or empirically.” Somewhat surprisingly then,

this result seems to have received little attention in the literature. In this paper, we

examine more closely the nature and source of β4 risk. In particular, we seek to identify,

and quantify, the fundamental economic determinants of this risk. First, we use the

Campbell (1991) return decomposition to show that β4 can be written as the sum of two

sub-betas: the covariation of liquidity costs with business (aggregate discounted dividend)

shocks and the covariation of liquidity costs with financial (market risk premium) shocks.
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Second, we estimate each of these sub-betas using 1964–2017 US stock market data. For

portfolios sorted along a variety of dimensions, we find that the business shock beta is

always larger than the financial shock beta, typically by a substantial multiple.

This result has a straightforward qualitative explanation. Adverse business and fi-

nancial shocks both reduce the value of the market portfolio (and hence investor wealth),

but risk premium shocks also improve future investment opportunities (Campbell and

Vuolteenaho, 2004). Consequently, adverse business shocks induce a greater excess of

sellers over buyers than do financial shocks, and hence have a greater impact on a stock’s

illiquidity. Our estimates quantify the magnitude of this fundamental intuition. As a

result of this difference in betas, there is also a difference in associated risk premia. In

particular, we find that the business shock liquidity risk premium for the most illiquid

portfolo (0.68%) is almost three times as large as the corresponding financial shock pre-

mium (0.24%). Investor concerns about illiquidity apparently relate more to its covaria-

tion with adverse business shocks than with shocks to market risk premia. However, both

liquidity risk premia are small for most portfolios, only becoming economically significant

for the most illiquid, volatile, or small portfolios.

We emphasize that our focus is not on testing the LCAPM, that exercise having

already been undertaken by Acharya and Pedersen (2005). Instead, our objective is

to shed further light on the illiquidity risk they identify as being most important: its

fundamental determinants, and the relative importance of these determinants.

In the next section, we outline the underlying theoretical relationships linking liquidity

risk, expected returns, and business and financial shocks. Section 3 describes our data

and the procedures we use to estimate betas and risk premia. Section 4 then presents

the estimation results, while section 5 considers some extensions and robustness issues.

Finally, Section 6 contains some concluding remarks.
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2 The Determinants of Liquidity Risk

2.1 The liquidity-adjusted CAPM (LCAPM)

Acharya and Pedersen (2005) consider an overlapping generations world where investors

choose investment portfolios to maximize expected utility over time. Because investors are

required to pay transaction costs when selling risky assets, they care about net returns

(i.e., return minus transaction costs) on these assets, but the sale of riskless assets is

costless and short-selling of risky assets is not allowed. Under these conditions, Acharya

and Pedersen show that:

Et−1 [Rit]−Rft = Et−1 [Cit]+
covt−1(Rit − Cit, RMt − CMt)

vart−1(RMt − CMt)

(
Et−1 [RMt − CMt]−Rft

)
(1)

where Rit is the time t return on company i stock, Rft is the riskless interest rate paid at

time t, RMt is the market portfolio return at time t, Cit is the time t cost of selling one

share of firm i expressed as a proportion of purchase price, and CMt is the corresponding

cost of liquidating the market portfolio. Under stationarity, Acharya and Pedersen show

that equation (1) can be written more compactly as:

E [Rit]−Rft = E [Cit] + λ

(
β1i + β2i − β3i − β4i

)
(2)

where:

λ = E [RMt − CMt]−Rft

β1i =
Cov (Rit, RMt − Et−1 [RMt])

Var (RMt − Et−1[RMt]− (CMt − Et−1[CMt]))

β2i =
Cov (Cit − Et−1 [Cit] , CMt − Et−1 [CMt])

Var (RMt − Et−1[RMt]− (CMt − Et−1[CMt]))

β3i =
Cov (Rit, CMt − Et−1 [CMt])

Var (RMt − Et−1[RMt]− (CMt − Et−1[CMt]))

β4i =
Cov (Cit − Et−1 [Cit] , RMt − Et−1 [RMt])

Var (RMt − Et−1[RMt]− (CMt − Et−1[CMt]))
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In the absence of liquidity costs (CMt = Cit = 0,∀i), equation (2) reduces to the stan-

dard CAPM. However, in the LCAPM, expected returns depend not only on the standard

market beta (β1i) but also on expected liquidity costs (E [Cit]) and three liquidity betas

(β2i, β3i, and β4i). β2i is the liquidity commonality beta — the covariation between stock

i’s liquidity costs and market liquidity costs. It captures the notion that investors require

greater compensation for holding a stock that becomes particularly illiquid during times

when the market as a whole is illiquid.1 β3i is the covariation between stock i returns

and market liquidity costs. Investors are prepared to pay a premium for stocks that

provide a hedge against market illiquidity. Finally, β4i is the covariation between stock

liquidity costs and the market returns. Intuitively, investors require compensation for

holding stocks that become illiquid during market downturns. Using US 1964-99 stock

market data, Acharya and Pedersen estimate that the market price of the third of these

liquidity risks is much greater than for the other two: the return premium associated

with β4i (0.82%) is about 5 and 10 times greater than that for β2i and β3i respectively.

Given its strong economic significance, β4i risk clearly warrants further investigation.

In the next section, we consider its underlying determinants.

2.2 The economic determinants of β4

Campbell (1991) uses the Campbell and Shiller (1988) decomposition to show that stock

return innovations satisfy:

rt − Et−1 [rt] ≈ ∆Et

[
∞∑
j=0

ρj∆dt+j

]
−∆Et

[
∞∑
j=1

ρjrt+j

]
(3)

where ∆Et denotes the change in expectations from t − 1 to t, rt = ln(1 + Rt) is the

natural log of returns at time t, ∆dt = ln( Dt

Dt−1
) is the natural log of time t growth in

dividends Dt, and ρ ∈ (0, 1) is a constant approximately equal to the average ratio of the

1See, for example, Chordia et al., 2000; Hasbrouck and Seppi, 2001; Huberman and Halka, 2001;
Coughenour and Saad, 2004.
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stock price to the sum of the stock price and the dividend.

Equation (3) must also hold for the market portfolio with return rM . Splitting the

market portfolio return into a short-term interest rate (which we assume is rf ≡ ln(1 +

Rf )) and an excess return π ≡ rM − rf , and adding and subtracting ∆Et

[∑∞
j=1 ρ

jrft+j

]
from the right-side of the above equation, we obtain:

rMt − Et−1 [rMt] ≈ ∆Et

[
∞∑
j=0

ρj∆dt+j

]
−∆Et

[
∞∑
j=1

ρjrft+j

]
−∆Et

[
∞∑
j=1

ρjπt+j

]

= ηdt − ηπt (4)

where ηdt = ∆Et

[∑∞
j=0 ρ

j∆dt+j

]
−∆Et

[∑∞
j=1 ρ

jrft+j

]
is the weighted present value of

shocks to expectations about future dividend growth and ηπt = ∆Et

[∑∞
j=1 ρ

jπt+j

]
is

the weighted sum of future shocks to the market risk premium. If ηd is positive, then

expectations about future dividend growth have risen relative to the returns available on

the riskless asset, so investors substitute out of the latter into stocks, driving up stock

prices now and hence the current return relative to expectation. If ηπ is positive, then

investors’ expected compensation for bearing for risk has risen, driving down current

stock prices and hence the current return relative to expectation. For ease of exposition,

we henceforth refer to ηd as business shocks, and to ηπ as financial shocks.

Assuming that log market return innovations (rMt − Et−1 [rMt]) closely approximate

simple return innovations (RMt−Et−1[RMt), then (4) can be substituted into the expres-

sion for β4 to obtain:2

β4i = βa4i + βb4i (5a)

where:

βa4i =
Cov (Cit − Et−1 [Cit] , ηdt)

Var (rMt − Et−1[rMt]− (CMt − Et−1[CMt]))
(5b)

βb4i =
-Cov (Cit − Et−1 [Cit] , ηπt)

Var (rMt − Et−1[rMt]− (CMt − Et−1[CMt]))
(5c)

2In our data, simple and log market return innovations have a correlation coefficient exceeding 0.99.
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Equations (5a)-(5c) reveal that β4, the common variation between illiquidity (high

C) and unexpected market returns, can be separated into two sub-betas. The first, βa4i,

arises from common variation in illiquidity and business shocks; the second, βb4i, is due to

common variation in liquidity (low C) and financial shocks. Intuitively, remembering that

higher β4 corresponds to lower risk, investors prefer stocks that provide high dividends

when liquidity is low (high βa4i), or have high liquidity when subject to a risk premium

shock (high βb4i).

The economic questions of interest surround the economic magnitudes of these two

sub-betas. Are they of equal importance to investors? If not, how do they differ? What

quantitative effect does each have on the cost of equity capital? The remainder of the

paper investigates these issues.

3 Computation of Shocks to Illiquidity, Market Re-

turns, and Economic Conditions

To estimate βa4i and βb4i, we first need to estimate time series for illiquidity innovations

(Cit−Et−1[Cit] and CMt−Et−1[CMt]), economic shocks (ηdt and ηπt), and market return

innovations (rMt −Et−1[rMt]). For this purpose, we use daily return and volume data in

CRSP for all firms listed on NYSE and AMEX between 31 July 1962 and 31 December

2017. We subsequently form portfolios sorted on various criterion, with the first year’s

sort based on 1963 data; this leaves January 1964 – December 2017 data available for

estimation. We exclude penny stocks (price less than $5) and thinly traded stocks (15 or

less days of return and volume data in any month) in order to minimize microstructure

and idiosyncratic effects respectively. Our procedure consists of three steps:

1. Follow the approach used by Acharya and Pedersen (2005) to estimate the illiquidity

innovations appearing in equations (5a)-(5c).
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2. Use an ARMA model to estimate the market return innovations appearing in equa-

tions (5a)-(5c).

3. Use a fundamental asset pricing relationship together with the ARMA model in 2.

to estimate the economic shocks appearing in equations (5a)-(5c).

3.1 Illiquidity innovations

To estimate illiquidity, we follow the procedure of Acharya and Pedersen (2005) and use:3

Cit = min {0.25 + 0.30ILLIQit · PMt−1, 30} /100 (6)

where PMt−1 is the ratio of market portfolio capitalization at the end of t− 1 to market

portfolio capitalization at the end of July 1962, and

ILLIQit =
1

Daysit

Daysit∑
d=1

|Ritd|
Vitd

is the Amihud (2002) month t measure of illiquidity. Ritd and Vitd are, respectively,

the stock i return and trading volume (in $ million) on day d in month t, so ILLIQit

measures, for each month, the average price sensitivity of stock i to a given volume of

trading: greater sensitivity indicates higher illiquidity. Amihud and Noh (2018) document

that, unlike volume based measures of illiquidity, ILLIQ correctly identifies liquidity

crises such as the October 1987 stock market crash and the financial crisis of 2007-2009.

Moreover, in contrast to illiquidity measures based on bid-ask spreads, ILLIQ measures

the overall costs of selling stocks. The transformation in equation (6) converts ILLIQ

into a direct measure of trading costs and normalizes it for market movements.

As we explain below in section 4, we estimate β4a and β4b for portfolios rather than

3 One potential problem here is that Acharya and Pedersen (2005) estimate the parameters 0.25 and
0.30 from their 1964-99 data set, but we do not have access to the spread data required to re-estimate
these parameters for our extended 1963-2017 period. We therefore stick with the Acharya and Pedersen
parameter values, but as a robustness check repeat our analysis using the 1964-99 time period and obtain
very similar results to those reported below — see the appendix.
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individual stocks. The measure of portfolio illiquidity Cpt corresponding to (6) is:

Cpt =
∑
i∈p

witCit

where wit is the weight of stock i in portfolio p. To compute the illiquidity innovations

Cpt − Et−1[Cpt] appearing in β4a and β4b, we estimate a modified AR(2) model:

Cpt = α0 + α1C
∗
pt−1 + α2C

∗
pt−2 + µpt (7)

where each C∗pt−s is an adjustment of Cpt−s designed to neutralize the impact of changes

in PM (as opposed to illiquidity).4 The illiquidity innovations are then given by the

estimated residual series from (7). That is:

Cpt − Et−1[Cpt] = µ̂pt (8)

and, for the market portfolio:

CMt − Et−1[CMt] = µ̂Mt (9)

For the market portfolio, equation (7) has an R2 of 0.68 when the market portfolio is

equal-weighted and 0.83 when it is value-weighted.5 Table 1 contains some additional

summary statistics for market illiquidity. As expected, both the mean and volatility of

illiquidity are higher for the equal-weighted portfolio than for the value-weighted portfo-

lio. Regardless of weighting, the first-order autocorrelations are very close to zero.

4For more details, see Acharya and Pedersen (2005, section 4.3).
5For the equal-weighted market portfolio, we use an AR(3) version of (7) as this yields lower AIC and

BIC values. As Acharya and Pedersen (2005) point out, equal weighting helps alleviate problems caused
by the over-representation of large and liquid stocks in our sample.
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Table 1: Summary Statistics for Market Illiquidity

Descriptive statistics summarising the characteristics of monthly market illiquidity costs.
E[CM ] is average illiquidity for the market portfolio and σ[CM ] is the corresponding
standard deviation. σ(∆CM ) is the standard deviation of the market portfolio’s illiquidity
innovations as estimated from an AR(3) version of equation (7). ρM is the first-order
autocorrelation for these innovations. The sample period is January 1964 – December
2017 (648 months).

Market Portfolio

Equal-Weighted Value-Weighted

E[CM ] 0.815 0.278

σ[CM ] 0.246 0.017

σ(∆CM ) 0.140 0.007

ρM 0.032 −0.018

3.2 Economic shocks and market return innovations

To compute ηdt and ηπt, we first assume that the expected market risk premium is con-

stant, i.e., Et[πt+j] = Et[πt+1],∀j. Then equation (4) can be written as:

rMt − Et−1 [rMt] = ηdt −

(
∞∑
j=1

ρjEt[πt+1]−
∞∑
j=1

ρjEt−1 [πt+1]

)

= ηdt −
ρ

1− ρ
(Et[πt+1]− Et−1[πt+1]) (10)

Next, we make use of a result from asset pricing which states that the (log) market risk

premium π is approximately proportional to the variance of the (log) market return:6

Et[πt+1] = Et[rMt+1]− rft+1 ≈ γσ2
t+1 (11)

6Equation (11) follows from the basic pricing equation (Cochrane, 2005, ch.1) assuming lognormal
market returns and utility that is isoelastic in end-of-perod wealth, and ignoring a Jensen’s Inequality
term (which affects only the interpretation of φ in (12) and has no impact on our results). Similar
equations can also be obtained in other ways, e.g., Merton (1980) and Huang and Litzenberger (1988).
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where γ is a scalar approximating average investor risk aversion and σ2
t = vart−1(rMt) is

the variance of rMt. Substituting (11) into (10) yields:

rMt − Et−1 [rMt] = ηdt + φ
(
σ2
t+1 − Et−1[σ2

t+1]
)

(12)

where φ = −ργ
1−ρ .7 Equation (12) is immediately recognizable as a regression equation of

the form:

rMt − Et−1 [rMt] = αM + φ
(
σ2
t+1 − Et−1

[
σ2
t+1

])
+ ξMt (13)

which implies (hats denote estimations from data):

η̂πt = φ̂
(
σ̂2
t+1 − Êt−1

[
σ2
t+1

])
(14)

η̂dt = α̂M + ξ̂Mt (15)

That is, the predicted and residual values obtained from estimating equation (13) generate

estimated time series for ηπt and ηdt.

Estimation of (13) requires that we first compute unexpected market returns (rMt −

Et−1 [rMt]) and market variance (σ2
t+1 − Et−1

[
σ2
t+1

]
). For this, we apply ARMA(m,n)

models to January 1964 – December 2017 data (648 months):

rMt = αM +
m∑
j=1

ψjMrMt−j +
n∑
k=1

θkMεMt−k + εMt (16)

σ2
t = ασ +

m∑
j=1

ψjσσ
2
t−j +

n∑
k=1

θkσεσt−k + εσt (17)

where σ2
t−j is computed from daily returns in month t− j. Table A1 reports the results

from estimating these models for various values of m and n. Although there is little

between them, we adopt the ARMA (2,0) specification for market return innovations

7Consistent with French et al. (1987), the predicted relationship between expected return innovations
and variance innovations is negative: an unexpected positive shock to variance raises expected returns
and hence lowers current prices and returns.
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Table 2: Computation of ηdt and ηπt

Panel A reports the results from estimating equation (13) – the regression of monthly market return inno-
vations (equation (16)) on market variance innovations (equation (17)) – using January 1964–December
2017 monthly data (648 months). Terms in parentheses are Newey and West (1994) standard errors.
Panel B contains some summary statistics for the estimates of ηdt and ηπt obtained from the panel A
regressions — see equations (14) and (15).

Panel A: Regression Panel B: Summary Statistics

(1) (2) ηd,t −ηπt

αM
0.000 Standard Deviation 0.055 0.023

(0.002) Minimum -0.256 -0.343

φ
-5.499 -5.499 Maximum 0.220 0.144
(0.795) (0.796) Autocorrelation -0.087 0.007

Adj. R2 0.144 0.144 Correlation with εMt 0.924 0.381

and the ARMA (1,1) specification for market variance innovations, based on the Akaike

information criterion (AIC), the Bayesian information criterion (BIC), and the first order

autocorrelation (ACF(1)) statistic, which is close to zero for all specifications. Ljung-Box

test statistics for 6- and 12-month lags are insignificant at conventional levels, indicating

that the estimated return and variance innovations are time-independent.

We use the residuals from these specifications of (16) and (17) to compute (rMt −

Et−1 [rMt]) and (σ2
t+1 − Et−1

[
σ2
t+1

]
) respectively. This allows us to estimate equation

(13), with the results reported in panel A of Table 2. As our model implies that the

constant is zero, we estimate specifications both with and without an intercept, but this

turns out to make little difference: regardless of specification, the estimate of φ is negative

(-5.463) and significant at the 0.01 level.

We apply these results to equations (14) and (15) to compute ηπt and ηdt respectively,

and report some summary statistics in Panel B of Table 2. Business shocks are almost

twice as volatile as financial shocks, but both have low first order autocorrelations. The

correlation between market return innovations and ηdt is 0.926 while the correlation be-

tween market return innovations and −ηπt is 0.378, suggesting that unexpected changes

in stock returns are more closely related to business shocks than to financial shocks.
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4 Estimation of β4a, β4b, and risk premia

We now have the necessary information for computing the two sub-betas appearing in

equations (5b) and (5c): illiquidity cost innovations can be obtained from equations (8)

and (9), business and financial shocks from (14) and (15), and market return innovations

from (16). Because the illiquidity measure Cit described in section 3.1 is likely to be

a noisy quantifier of illiquidity for individual stocks, we eschew stock-level analysis and

instead form portfolios in order to estimate the two sub-betas. The sorting is initially

based on illiquidity (Cpt) and is updated annually, with year y illiquidity of every stock

determined by year y − 1 average ranking.8 Portfolio illiquidity Cpt is computed on a

value-weighted basis. As previously noted, we also form two market portfolios, one that

is equal-weighted and one that is value-weighted.

4.1 Estimation of β4a and β4b

Table 3 reports estimates of β4a, β4b, and portfolio characteristics for a sample of the

25 illiquidity-sorted portfolios.9 Average illiquidity costs E[Cp] rise from 0.25% for the

most liquid portfolio to 8.29% for the least liquid. This is associated with higher average

excess returns E[Rp] — rising from 0.47% per month for the most liquid portfolio to

0.95% for the least liquid, although the increase is not perfectly monotonic. Monthly

turnover is roughly n-shaped, first rising with illiquidity, then falling. Finally, portfolio

market capitalization increases monotonically with liquidity.

Regardless of whether the market portfolio is equal- or value-weighted, estimates of

both β4ap and β4bp decline (i.e., become more negative) in an almost perfectly monotonic

manner with illiquidity: portfolios with high illiquidity (high Cp) tend to also have greater

sensitivity of liquidity to both business shocks and to financial shocks. More interesting

are the differences between them. As illiquidity increases, β4ap estimates increasingly

8Unsurprisingly, sorting on size produces very similar results, so we do not report these findings.
9The t-statistics are based on standard errors estimated using the Davison and Hinkley (1997,

sect. 2.3) bootstrapping procedure for 10,000 simulations.
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Table 3: Portfolio Betas and Characteristics for Illiquidity-Sorted Portfolios

This table reports betas and other characteristics of illiquidity-sorted portfolios during 1964-2017. All
estimates are based on 648 monthly observations.***[CORRECT?]*** Illiquidity, as measured by Cp, is
updated every January based on the previous year’s illiquidity. Returns and illiquidity for portfolio p are
computed on a value-weighted basis and on both an equal-weighted and value-weighted basis (see ‘Weight’
row) for the market portfolio. Terms in parentheses are t-statistics, based on bootstrap standard errors
based computed from 10,000 simulated realizations. E [Cp] column is average illiquidity of portfolio p
and σ(∆Cp) column is the standard deviation of portfolio p’s illiquidity innovations. E [Rep] and σ(Rep)
are average and standard deviation of value weighted monthly portfolio excess returns for portfolio p.
Turn is monthly ***[CORRECT?]*** portfolio turnover ***[HOW MEASURED?]*** and Size is equity
market capitalization.

Estimated Portfolio Betas Portfolio Characteristics
β4ap
(·100)

β4bp
(·100)

β4ap
(·100)

β4bp
(·100)

E [cp]
(%)

σ (∆cp)
(%)

E [re,p]
(%)

σ (rp)
(%)

trn
(%)

Size
(%)

Liquid
-0.00 -0.00 -0.00 -0.00

0.25 0.00 0.47 1.53 5.68 24.16
(-2.50) (-1.48) (-3.01) (-1.21)

3
-0.02 -0.00 -0.02 -0.00

0.26 0.00 0.55 1.76 7.90 4.48
(-6.27) (-3.10) (-6.29) (-2.98)

5
-0.04 -0.01 -0.05 -0.00

0.27 0.01 0.65 1.82 8.57 2.41
(-6.86) (-3.30) (-7.05) (-2.91)

7
-0.06 -0.01 -0.07 -0.01

0.28 0.01 0.73 1.95 9.56 1.37
(-6.63) (-3.01) (-6.53) (-2.94)

9
-0.10 -0.02 -0.12 -0.01

0.30 0.02 0.74 1.99 9.28 0.92
(-7.11) (-3.66) (-7.36) (-3.29)

11
-0.19 -0.03 -0.23 -0.02

0.34 0.03 0.70 2.04 8.64 0.66
(-7.17) (-3.00) (-7.25) (-2.84)

13
-0.27 -0.04 -0.36 -0.04

0.38 0.05 0.74 2.11 8.45 0.48
(-6.17) (-3.22) (-6.37) (-2.74)

15
-0.50 -0.05 -0.59 -0.05

0.45 0.07 0.82 2.22 7.82 0.36
(-6.83) (-3.12) (-6.64) (-2.82)

17
-0.68 -0.08 -0.80 -0.07

0.59 0.11 0.78 2.32 6.88 0.27
(-6.25) (-2.81) (-6.17) (-2.58)

19
-1.08 -0.14 -1.25 -0.14

0.79 0.17 0.89 2.43 6.41 0.18
(-6.48) (-3.07) (-6.19) (-2.94)

21
-1.91 -0.13 -2.39 -0.11

1.27 0.31 0.90 2.58 5.23 0.12
(-7.38) (-1.43) (-7.25) (-1.13)

23
-2.68 -0.39 -3.07 -0.46

2.45 0.59 0.95 2.72 4.53 0.08
(-6.15) (-1.75) (-4.86) (-1.73)

Illiquid
-5.56 -2.01 -8.06 -2.09

8.29 1.47 0.95 3.05 2.96 0.03
(-5.02) (-2.38) (-5.32) (-1.93)

Weight Equal Equal Value Value

diverge from β4bp estimates. For the 5th most-liquid portfolio, β4ap is four times β4bp, but

for the 21st most-liquid portfolio this multiple rises to 15. The β4ap estimates are not only

economically bigger, but also more precisely estimated and hence have higher t-statistics.

Overall, the liquidity risk of illiquid portfolios is primarily due to such portfolios seeing

liquidity dry up in the presence of adverse business shocks; by contrast, liquidity seems

to be relatively unaffected by adverse financial shocks.

Such a difference is not, in a qualitative sense, surprising. Both adverse business

13



shocks (which reduce the riskless present value of expected future dividend growth) and

adverse financial shocks (which increase expected future market risk premia) lower in-

vestor wealth, but the latter also improve future investment opportunities and so should

not result in the same loss of liquidity. Our analysis suggests this difference can be

substantial.

4.2 Expected Return Premia

For portfolio ` = 1, ..., 25, the incremental expected return premium associated with β4a

risk is calculated as:

−12 · λ · (β4a` − β4a1) (18)

where β4a1 is the value of β4a for the most liquid portfolio (` = 1) and λ is the monthly

net market risk premium defined in equation (2). Similarly, the incremental expected

return premium associated with β4b risk is calculated as:

−12 · λ · (β4b` − β4b1) (19)

Acharya and Pedersen (2005) use cross-sectional regressions based on (2) to estimate λ.

That is, for each month t,they estimate regressions of the form:

rpt − rft = α + κĈp + λβ̂p + εpt (20)

where Ĉp is the pre-estimated average of Cpt and β̂p ≡ (β̂1p+ β̂2p− β̂3p− β̂4ap− β̂4bp) is the

pre-estimated net portfolio beta. Using their preferred specification, they estimate λ to

be 1.512. In our longer time series, based on a weighted average from eight specifications

of (20) (see Table A3 for details), we obtain λ = 1.010 (equal-weighted market portfolio)

or 0.964 (value-weighted market portfolio).10 For the most illiquid portfolio, the implied

expected return premia from (18) and (19) are:

10For completeness, our estimates of β1p, β2p, and β3p appear in Table A2.
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β4a risk premium = −12 · 1.010 · (−0.056− 0) = 0.68% (equal-weighted)

β4a risk premium = −12 · 0.964 · (−0.081− 0) = 0.94% (value-weighted)

β4b risk premium = −12 · 1.010 · (−0.020− 0) = 0.24% (equal-weighted)

β4b risk premium = −12 · 0.964 · (−0.021− 0) = 0.24% (value-weighted)

Figure 1 depicts the above calculations for all illiquidity-sorted portfolios ` = 1, ..., 25.

Two points stand out. First, the premium resulting from covariation between illiquid-

ity and business shocks always exceeds the premium resulting from covariation between

illiquidity and financial shocks, although the absolute difference is small for stocks with

above-median liquidity. Second, both types of premium exceed 0.2% only for portfolios

in the lowest liquidity quintile; all other portfolios attract only economically insignificant

premia.

Figure 1: β4a and β4b Risk Premia for Illiquidity-Sorted Portfolios
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5 Additional Considerations

In the previous section, we found that the liquidity risk premium attributable to business

shocks is substantially greater than the liquidity risk premium attributable to finan-

cial shocks, but that both premia are economically significant only for the most illiquid
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portfolios. In this section we consider some robustness and extension checks of these

conclusions.

5.1 Alternative sorts

In section 4, we sorted portfolios according to a particular measure of liquidity Cp. Ex

ante, other criteria are also defenisble and in this section, we consider two — size (market

equity capitalization) and illiquidity volatility (standard deviation of portfolio illiquidity

innovations). In these cases, the risk premia profiles appear in Figures 2 and 3 respec-

tively.

Figure 2: β4a and β4b Risk Premia for Size-Sorted Portfolios
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Unsurprisingly, given that illiquid portfolios are likely to contain small stocks that

have high illiquidity volatility, sorting portfolios along the latter two dimensions has

little effect on our original findings. The business shock premium is always greater than

the financial shock premium, but neither is economically significant for most portfolios.
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Figure 3: β4a and β4b Risk Premia for Portfolios Sorted on Illiquidity Volatility
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5.2 Potential Overfitting Issues with ηd,t and ηπt

In section 3.2, we estimate unexpected changes in market returns and market return

variances using an ARMA model. The unexpected changes are defined as the difference

between the fitted values of the ARMA model and actual value, and the model parameters

are estimated from the entire sample. When estimated in this way, fitted values of

expected market returns and variances are potentially subject to over-fitting and forward-

looking bias.

To address this problem, we instead estimate expected market returns (Et−1 [rMt])

using a rolling-window moving average model, and expected market return variance

(Et−1[σ
2
t+1]) using an exponential weighted moving average (EWMA) model. The moving

average model is widely used in the forecasting literature (Brock et al., 1992; Pesaran

and Timmermann, 1995), while the EWMA estimator is a common approach to fore-

casting the conditional variance (Morgan, 1996), and is a special case of a generalized

autoregressive conditional heteroskedascity (GARCH) model.
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With these models, expected market returns and variance are estimated by:

Et−1 [rMt] =
1

n

n∑
i=1

rMt−i (21)

Et−1[σ
2
t+1] = (1− δ)

m∑
i=1

δi (πt−i − π̄)2 (22)

where n is the number of months in the moving average window, and 0 < δ < 1 is a

constant decay (or smoothing) factor. We use n = 60 (5 years) for the rolling window

moving average estimation and δ = 0.95 for the exponential moving average estimation.

Equations (21) and (22) are used to estimate the market return and variance innova-

tions, which in turn are used to estimate betas and risk premia for the illiquidity-sorted

portfolios. The resulting risk premia profiles appear in Figure 4. The difference between

the two premia is greater using this approach, and the premium associated with business

shock liquidity risk is higher, but the overall picture is the same as in Figure 1. Any biases

associated with our estimates of expected market returns and variances would seem to

be relatively minor.

Figure 4: β4a and β4b Risk Premia for Portfolios Sorted on Illiquidity: MA and EWMA
Innovations
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5.3 1963-99 period

As noted in footnote 3, our estimates of liquidity costs Cp depend in part on parameters

obtained by Acharya and Pedersen (2005) from 1963-99 data. If the values of these pa-

rameters have shifted over time, then our liquidity cost estimates, and hence our results,

would be called into question. To address this issue, we therefore repeat our analysis

using only 1963-99 data and summarize this in Figure 5. The outcome is almost identical

to Figure 1, suggesting that the Acharya and Pedersen liquidity cost parameters have

remained more or less stable in the post-1999 period, and therefore that their 1963-99

values are suitable for use in our extended period.

Figure 5: β4a and β4b Risk Premia for Portfolios Sorted on Illiquidity: 1963-99 Data
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5.4 Three economic shocks

In section 2.2, we use the Campbell (1991) decomposition to split unexpected market

returns into innovations resulting from (i) shocks to expectations about future discounted

dividend growth and (ii) shocks to expectations about future market risk premia. We

do this because it is most convenient (in the sense of requiring the weakest assumption

about expectations) for the analysis in section 3.2. However, it is more usual to include
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the interest rate shock component either separately (Campbell and Mei, 1993) or together

with the risk premium component (Campbell and Vuolteenaho, 2004). In our case, this is

potentially important because we find that the largest component of systematic liquidity

risk is attributable to what we call business shocks, rather than financial shocks, but as

the former includes interest rates it also has a ‘financial’ dimension. This leaves open the

possibility that the importance of business shocks is at least partly due to interest rate

considerations.

To investigate this, first rewrite equation (4) as:

rMt − Et−1 [rMt] ≈ ∆Et

[
∞∑
j=0

ρj∆dt+j

]
−∆Et

[
∞∑
j=1

ρjπt+j

]
−∆Et

[
∞∑
j=1

ρjrft+j

]

= ηgt − ηπt − ηrft (23)

where ηgt = ∆Et

[∑∞
j=0 ρ

j∆dt+j

]
is the weighted sum of shocks to expectations about

future (undiscounted) dividend growth, and ∆Et

[∑∞
j=1 ρ

jrft+j

]
is the weighted sum of

shocks to expectations about future short-term interest rates. Then making the addi-

tional assumption that the expected short-term interest rate is a constant, this becomes

(remembering that rft+1 is known at date t):

rMt − Et−1 [rMt] = ηgt −
ρ

1− ρ
[

(Et[πt+1]− Et−1[πt+1]) + (rft+1 − Et−1[rft+1])
]

Then, using (11):

rMt − Et−1 [rMt] = ηdt + φ1

(
σ2
t+1 − Et−1[σ2

t+1]
)

+ φ2 (rft+1 − Et−1[rft+1) (24)

where φ1 = −ργ
1−ρ and φ2 = −ρ

1−ρ . Estimating interest rate innovations with an ARMA

model and otherwise proceeding as before yields Figure 6. The risk premia associated

with dividend shocks are essentially the same as those previously observed for business

shocks, while the risk premia associated with interest rate shocks are essentially zero,
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even for the most illiquid portfolios. Thus, liquidity risk appears to be primarily due to

common variation in shocks to liquidity and aggregate dividends, partly due to common

variation in shocks to liquidity and the market risk premium, and not at all due to com-

mon variation in shocks to liquidity and interest rates.

Figure 6: β4a and β4b Risk Premia for Portfolios Sorted on Illiquidity: 3-Way Decompo-
sition
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6 Conclusion

What aspects of liquidity risk matter for asset pricing? Acharya and Pedersen (2005)

show that the primary contributor to the liquidity risk premium is common variation

between shocks to liquidity and shocks to market portfolio returns. Extending this re-

sult, we find that this covariation is itself primarily due to common variation between

shocks to liquidity and shocks to aggregate dividends. By contrast, common variation be-

tween shocks to liquidity and shocks to the market risk premium or interest rates attract

only small premia. Overall, liquidity risk premia are generally small: even the premium

attributable to dividend shocks is economically significant only for the top quintile of

illiquid stocks.
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Appendix

1. Estimation of eqtns (15) and (16)

Table A1: ARMA(m,n) Estimation Results

Monthly ARMA models for logged market returns (rMt) and market variance (σ2
Mt) using January 1964

– December 2017 data (648 months). The first four columns report results for logged market returns
and the next four columns report results for logged market return variance:

rMt = Constant + εrMt
+

m∑
j=1

ψjrMt−j +

n∑
k=1

θkεrMt−k

σ2
Mt = Constant + εσ2

Mt
+

m∑
j=1

ψjσ
2
Mt−1 +

n∑
k=1

θkεσ2
Mt−k

Standard errors are in parentheses. AIC denotes the Akaike information criterion, BIC is the Bayesian
information criterion, and ACF(1) is the first-order autocorrelation coef- ficient for the estimated
residuals. LB(6) and LB(12) are Ljung-Box test statistics with 6 and 12 lags respectively. p-values for
the Ljung-Box test are in square brackets.

Logged Market Returns (rMt) Logged Market Return Variance (σ2
Mt)

ARMA
(1,0)

ARMA
(1,1)

ARMA
(2,0)

ARMA
(2,1)

ARMA
(1,0)

ARMA
(1,1)

ARMA
(2,0)

ARMA
(2,1)

Const. 0.014
(0.003)

0.014
(0.003)

0.014
(0.003)

0.014
(0.003)

0.002
(0.000)

0.002
(0.000)

0.002
(0.000)

0.002
(0.000)

ϕ1 0.159
(0.039)

-0.193
(0.213)

0.171
(0.039)

0.116
(0.465)

0.558
(0.033)

0.730
(0.049)

0.488
(0.039)

1.070
(0.228)

ϕ2 -0.070
(0.039)

-0.062
(0.085)

0.126
(0.039)

-0.205
(0.146)

φ1 0.365
(0.202)

0.055
(0.466)

-0.256
(0.071)

-0.589
(0.216)

AIC -1815.0 -1815.9 -1816.2 -1814.2 -5264.0 -5274.2 -5272.5 -5273.5

BIC -1801.5 -1798.0 -1798.3 -1791.9 -5250.6 -5256.3 -5254.6 -5251.2

ACF(1) 0.011 -0.001 0.001 0.000 -0.070 0.007 -0.005 -0.003

LB(6) 6.168
[0.405]

3.305
[0.770]

3.003
[0.809]

2.997
[0.809]

16.177
[0.013]

4.419
[0.620]

5.806
[0.445]

3.125
[0.793]

LB(12) 10.822
[0.544]

7.885
[0.794]

7.558
[0.819]

7.567
[0.818]

17.851
[0.120]

4.723
[0.967]

6.393
[0.895]

3.442
[0.992]
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2. Estimates of β1, β2, and β3 for Illiquidity-Sorted Portfolios.

Table A2: Portfolio Betas and Characteristics for 25 Illiquidity Portfolios

Portfolio β1 β2 β3 β1 β2 β3

Liquid
53.70 0.00 -0.37 86.02 0.00 -0.05

(28.10) (1.57) (-5.09) (53.17) (2.08) (-7.51)

3
65.29 0.00 -0.50 93.30 0.00 -0.06

(39.96) (6.75) (-5.55) (66.85) (6.04) (-8.30)

5
68.47 0.00 -0.53 94.29 0.00 -0.06

(44.94) (5.67) (-6.12) (53.88) (5.52) (-8.40)

7
75.53 0.00 -0.65 100.96 0.00 -0.07

(40.32) (6.59) (-5.64) (42.74) (5.86) (-8.48)

9
77.79 0.00 -0.67 101.65 0.00 -0.08

(59.29) (6.09) (-6.46) (39.67) (6.08) (-8.96)

11
76.21 0.00 -0.67 96.24 0.00 -0.07

(52.77) (6.13) (-6.72) (33.90) (6.16) (-8.76)

13
80.21 0.01 -0.69 101.60 0.00 -0.07

(50.57) (5.82) (-6.15) (33.72) (5.24) (-8.13)

15
81.88 0.01 -0.73 101.01 0.00 -0.08

(56.70) (6.02) (-7.36) (31.12) (5.78) (-8.06)

17
84.19 0.01 -0.80 101.83 0.00 -0.08

(59.30) (6.30) (-7.50) (29.76) (5.75) (-8.49)

19
86.44 0.03 -0.79 103.48 0.00 -0.08

(46.58) (6.46) (-7.41) (25.31) (6.09) (-8.31)

21
87.21 0.04 -0.84 102.65 0.01 -0.09

(50.23) (5.82) (-6.99) (23.93) (5.65) (-8.34)

23
81.10 0.08 -0.78 93.96 0.01 -0.08

(35.33) (6.79) (-6.97) (19.39) (7.52) (-7.35)

ILLIQ
74.38 0.21 -0.74 84.20 0.02 -0.07

(27.58) (6.05) (-7.57) (17.67) (7.24) (-6.86)
Equal Equal Equal Value Value Value
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3. Estimation of λ

Table A3: Estimation of λ from 25 Illiquidity-Sorted Portfolios

This table reports cross-sectional liquidity-adjusted CAPM estimation results based on data for Jan
1964 - Dec 2017 (648 months). The regression model is either:
rpt − rft = α+K1E [Cpt] + λβpt + ept, or:
rpt − rft = α+K2E [Cpt · Turnpt] + λβpt + ept.
where βpt ≡ β1pt + β2pt − β3pt − β4apt − β4bpt is the overall LCAPM beta of portfolio p in month t. The
first specification allows K1 to differ from its theoretical value of 1 to allow for holding periods exceeding
a month (portfolio average of 13.7 months in our sample). The second specification recognizes that
holding periods may vary across portfolios of different liquidity, as suggested by Table 3. The estimated
effects are the averages of estimates from 648 cross-sectional regressions using a GMM framework.
Standard errors are computed using the Newey and West (1987) method with two lags. t-statistics
are in parentheses. Adjusted R2s are obtained from OLS regressions. Weight indicates whether the
market portfolio used to estimate βpt is equal or value-weighted. The weighted average estimates of λ

are computed as
∑4
i=1

(
λi × 1/se(λi)∑4

j=1 1/se(λj)

)
.

α K1 K2 λ Adj-R2 Weight

1
-0.206 0.021 1.198

0.886 Equal
(-0.707) (1.159) (2.623)

2
-1.303 0.048 2.026

0.755 Value
(-1.986) (2.102) (2.674)

3
-0.173 0.773 1.133

0.886 Equal
(-0.613) (1.168) (2.545)

4
-1.143 1.691 1.828

0.755 Value
(-1.871) (2.126) (2.591)

5
0.025 0.936

0.996 Equal
(1.196) (3.673)

6
0.043 0.726

0.987 Value
(2.008) (3.663)

7
0.909 0.909

0.996 Equal
(1.201) (3.530)

8
1.618 0.686

0.987 Value
(2.091) (3.515)

Average
(simple)

1.044
Equal

Average
(simple)

1.347
Value

Average
(Weighted)

1.010
Equal

Average
(Weighted)

0.964
Value
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