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Abstract:  A common procedure in economics is to estimate long-run effects from models 
with lagged dependent variables.  For example, macro panel studies frequently are concerned 
with estimating the long-run impacts of fiscal policy, international aid, or foreign investment.  
This note points out the hazards of this practice.  We use Monte Carlo experiments to 
demonstrate that estimating long-run impacts from dynamic models produces unreliable 
results.  Biases can be substantial, sample ranges very wide, and hypothesis tests can be 
rendered useless in realistic data environments.  There are three reasons for this poor 
performance. First, OLS estimates of the coefficient of a lagged dependent variable are 
downwardly biased in finite samples.  Second, small biases in the estimate of the lagged, 
dependent variable coefficient are magnified in the calculation of long-run effects. And third, 
and perhaps most importantly, the statistical distribution associated with estimates of the LRP 
is complicated, heavy-tailed, and difficult to use for hypothesis testing.   
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I.  INTRODUCTION 

This note points out the hazards of estimating long-run effects from models with lagged 

dependent variables.  We illustrate the problem in the context of the following ARDL(p,q) 

model where p=1 and q=0:   

(1)  𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑡𝑡  + 𝛽𝛽𝑦𝑦𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 𝑡𝑡 =  1,2, . . . ,𝑇𝑇. 

We assume  |𝛽𝛽𝑦𝑦| < 1.  Within this framework, it is common to estimate the long-run effect of 

x on y, also known as the long-run propensity (LRP) of x, by 

(2)  𝐿𝐿𝐿𝐿𝐿𝐿 = �̂�𝛽𝑥𝑥 �1 − �̂�𝛽𝑦𝑦�� ,  

where �̂�𝛽𝑥𝑥 and �̂�𝛽𝑦𝑦 are the OLS estimates from Equation (1).1  Another approach to estimating 

LRP is to rewrite Equation (1) in growth equation form as 

(3.a) ∆𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝜃𝜃𝑥𝑥𝑡𝑡) + 𝑢𝑢𝑡𝑡, or 

(3.b) ∆𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝜃𝜃𝑥𝑥𝑡𝑡−1) + 𝛽𝛽𝑥𝑥∆𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡,  

where 𝛿𝛿 = �𝛽𝛽𝑦𝑦 − 1�, and the value of LRP is estimated by 𝜃𝜃� via maximum likelihood. 

 Examples of both approaches abound.  It is common to see the former approach 

presented in popular econometrics textbooks such as Judge et al. (1988, page 737), Johnston & 

Dinardo (1997, page 245), Hill et al. (2001, page 328), Kennedy (2008, page 322), Gujarati 

and Porter (2010, page 378), Greene (2012, page 423), and Wooldridge (2012, page 635).  

Recent journal articles employing this approach include Baltagi et al. (2009), Hoque and Yusop 

(2010); Heid et al. (2012); Islam et al. (2013), and Li et al. (2015).  The latter approach is 

common in the macro panel literature.  Recent examples here include Gemmell et al. (2011), 

Ojede and Yamarik (2012), Klomp and De Hann (2013), Calderón et al. (2015), and Eberhardt 

and Presbitero (2015), to just name a few. 

                                                      
1 Generalization to higher orders of p and q is straightforward.   
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 Unfortunately, this procedure has serious pitfalls.  It is well known that OLS estimation 

of autoregressive (AR) models -- while consistent -- is biased in finite samples (Hurwicz, 1950; 

Phillips, 1977).  It follows that estimates of the LRP will likewise be biased.  Even worse, the 

LRP is a nonlinear function of the AR coefficient(s), and a small bias in the denominator can 

be greatly magnified, especially when the AR coefficients are close to the unit circle.   

Marriott and Pope (1954) illustrate this in the case when p = 1.  The first-order bias for 

OLS estimation of  𝛽𝛽𝑦𝑦 is −(1 + 3𝛽𝛽𝑦𝑦)/𝑇𝑇.  When  𝛽𝛽𝑦𝑦 = 0.95 and 𝑇𝑇 = 100, this implies a bias 

of -0.0385, or 4% of the true value.  However, the associated bias in the LRP is 43.5%, since 

the corresponding estimate of LRP is 11.3, compared to its true value of 20.  Things can get 

even worse when higher order AR terms are included in the equation.  As pointed out by 

Patterson (2000), small biases in the estimates of the individual AR coefficients accumulate, 

often in a reinforcing rather than offsetting manner.  

And there is yet another issue.  The LRP of Equation (2) is the ratio of two normally 

distributed random variables.  As is well known, when both random variables are independent 

and have zero means, their ratio is distributed Cauchy.  However, when the two variables have 

non-zero means, Hinkley (1969) has shown that the associated distribution is quite 

complicated.  The shape of its density can be unimodal, bimodal, symmetric, or asymmetric 

depending on the value of the coefficient of the denominator variable.  Due to this fact, it is 

difficult to work with the LRP and develop appropriate statistical tests.    

At some level, most of the above is already known.  What is not known – as evidenced 

by the widespread use of these procedures – is the practical importance of these problems for 

estimates of long-run effects in realistic data environments.  That is the main contribution of 

this study.   

We proceed as follows.  Section 2 illustrates the problem by demonstrating the finite 

sample bias associated with estimating LRP from univariate time series data.  It explores a 
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number of solutions that have been suggested in the literature, specifically (i) Fieller’s method 

for testing hypotheses about ratios of parameters, and (ii) jackknifing and indirect inference for 

correcting biases in coefficients estimated from an ARDL model.  Section 3 extends the 

analysis in two directions.  It first considers the estimation of LRP in a panel data setting, 

investigating the performance of several popular dynamic panel data estimators (Dynamic 

Fixed Effects, Anderson-Hsaio, Difference GMM, and System GMM).  It also explores the 

effect of nonstationarity, and the use of Dynamic OLS in both a univariate time series and panel 

data setting.  Section 4 then compares a wide variety of panel data estimators to identify which 

estimators perform best.  In addition to the estimators already mentioned, it studies Mean 

Group, Common Correlated Effect Mean Group, and Augmented Mean Group estimators.  

Relatedly, it investigates the widely adopted practice of transforming annual data into 5-year 

averages. Section 5 summarizes the main findings of our analysis and draws implications for 

the estimation of long-run effects. 

 
2.  ESTIMATION OF LRP USING UNIVARIATE TIME SERIES 
 
Hurwicz bias.  We introduce the problem of finite sample bias by using Monte Carlo 

experiments to study OLS estimation of the model: 

(4)  𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑡𝑡−1  + 𝑢𝑢𝑡𝑡,  𝑢𝑢𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1),  t = 1,2,...,T. 

The error terms 𝑢𝑢𝑡𝑡  are generated independently of the lagged dependent variable values, 𝑦𝑦𝑡𝑡−1.  

T takes values between 10 and 1000 (𝑇𝑇 = 10, 30, 50, 100, and 1000), 𝛽𝛽0 = 0, and 𝛽𝛽𝑦𝑦 takes 

values between 0.60 and 0.95 (𝛽𝛽𝑦𝑦 = 0.60, 0.70,0.80, 0.90, and 0.95).  For each simulated 

sample, OLS is used to estimate the value of 𝛽𝛽𝑦𝑦.2  10,000 replications were run for each of the 

(T, 𝛽𝛽𝑦𝑦) combinations.  

                                                      
2 While the data generating process (DGP) in these, and all subsequent, experiments set the value of the constant 
term to zero, the estimated models include an intercept. 
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 The results of these Monte Carlo experiments are reported in TABLE 1.3  The top panel 

of the table reports the average estimated value of �̂�𝛽𝑦𝑦 across the 10,000 replications.  The 

bottom panel reports Type I error rates, where the values are the rejection rates of the null 

hypothesis, H0: 𝛽𝛽𝑦𝑦 = 𝑖𝑖𝑡𝑡𝑖𝑖 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑢𝑢𝑡𝑡.  For both panels, the columns represent the different 

sample sizes, and the rows represent the different true values of  𝛽𝛽𝑦𝑦.   

 For example, when 𝛽𝛽𝑦𝑦 = 0.80 and T=50, the average estimated value of 𝛽𝛽𝑦𝑦 = 0.73.  

When T=1000, the average estimated value of 𝛽𝛽𝑦𝑦 increases to 0.80, illustrating the consistency 

of the OLS estimator.  Likewise, when 𝛽𝛽𝑦𝑦 = 0.80 and T=50, the rejection rate of the null 

hypothesis H0: 𝛽𝛽𝑦𝑦 = 𝑖𝑖𝑡𝑡𝑖𝑖 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑢𝑢𝑡𝑡 -- given a significance level of 5% -- is 0.08.  This rate 

declines as the sample size gets larger, falling to 0.05 when T=1000.  The finite sample bias 

from estimating Equation (4) is well known as Hurwicz bias (Hurwicz, 1950).  While the biases 

may appear relatively small, as noted above, small biases in 𝛽𝛽𝑦𝑦 can result in large biases in 

LRP.  

Estimation of long-run effects.  The next set of Monte Carlo experiments add an 

explanatory variable to the data generating process (DGP) of Equation (4): 

(5)  𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑡𝑡  + 𝛽𝛽𝑦𝑦𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡,  𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1),   𝑡𝑡 =  1,2, . . . ,𝑇𝑇; 

where 𝛽𝛽0 = 0, 𝛽𝛽𝑥𝑥 = 1, 𝛽𝛽𝑦𝑦 takes values 0.60, 0.70, 0.80, 0.90, and 0.95 (same as above), and 

Cov(𝑥𝑥𝑡𝑡, 𝑢𝑢𝑡𝑡) = 0.  The corresponding true LRP values are 2.5, 3.3, 5, 10, and 20.   

 TABLE 2 reports the results of these Monte Carlo experiments.  The table is organized 

similarly to TABLE 1 with some minor differences.  We now report three panels.  The top 

panel reports the median (not average) value of the estimated LRP values across the 10,000 

                                                      
3  Stata, Version 14 was used to produce TABLES 1-3 and 6-9.  Matlab was used to produce TABLES 4 and 5.  
All the programs are available online at Dataverse: 
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SCFMVN . 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SCFMVN
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replications.4 The middle panel reports the 90 percent empirical sample range calculated by 

taking the 5th and 95th percentile values of the sorted 10,000 estimated LRP values.  The bottom 

panel reports Type I error rates associated with the null hypothesis, H0: 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑖𝑖𝑡𝑡𝑖𝑖 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑢𝑢𝑡𝑡.  

We report simulation results for sample sizes of T = 10, 50, and 1000. 

 For a given sample size, the bias in estimating LRP increases (in both absolute and 

percentage terms) as 𝛽𝛽𝑦𝑦 approaches one.  For example, when 𝛽𝛽𝑦𝑦 = 0.60 and T = 50, the median 

estimated value of 𝐿𝐿𝐿𝐿𝐿𝐿 is 2.4, compared to its true value of 2.5.  When 𝛽𝛽𝑦𝑦 increases to 0.90, 

corresponding to a higher LRP value of 10, the associated median estimate of LRP is 7.5, a bias 

of negative 25 percent.  In addition, the 90 percent empirical sample range becomes 

substantially wider, and the Type I error rate deviates further from 0.05.  

TABLE 2 illustrates two additional points.  First, the bias associated with estimating 

LRP is a finite sample problem.  As sample sizes increase, LRP values are estimated with 

greater precision and the sizes of the respective hypothesis tests converge to their true values. 

Second, the bias can be quite large for sample sizes routinely used by researchers.  This will be 

further illustrated when we move our experiments into a panel data setting.  

Using Fieller’s method to test hypotheses about LRP.  An alternative way to test LRP 

is based on Fieller’s Theorem (1954).  The original theorem proposes a procedure to obtain a 

confidence set for a ratio of two means of normal variables.  Zerbe (1978) extends the theorem 

to ratios of two normal variables.  Fieller’s method has received limited attention in 

econometrics.  An exception is Bolduc et al. (2010), who provide a recent economic application 

in the context of discrete choice models.  Fieller’s method has not, to the best of our knowledge, 

been applied to testing hypotheses about LRP.  To apply Fieller’s method to testing 𝐿𝐿𝐿𝐿𝐿𝐿� = 𝛾𝛾, 

we calculate the following test statistic, 

                                                      
4 We report the median rather than the mean, because estimates of 𝛽𝛽𝑦𝑦 very close to 1 can cause the LRP to be 
extremely large, making the sample mean uninformative.   
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(6) 𝑡𝑡(𝛾𝛾) =  
𝛽𝛽�𝑥𝑥−𝛾𝛾(1−𝛽𝛽�𝑦𝑦)

(𝛾𝛾2𝑣𝑣�𝑦𝑦+2𝛾𝛾𝑣𝑣�𝑥𝑥𝑦𝑦+𝑣𝑣�𝑥𝑥)0.5 , 

which follows 𝑁𝑁(0,1).  In the test statistic 𝑡𝑡(𝛾𝛾), 𝑣𝑣�𝑥𝑥 is the estimated variance of �̂�𝛽𝑥𝑥, 𝑣𝑣�𝑦𝑦 is the 

estimated variance of �̂�𝛽𝑦𝑦,  and 𝑣𝑣�𝑥𝑥𝑦𝑦 is the estimated covariance of �̂�𝛽𝑥𝑥 and �̂�𝛽𝑦𝑦.  

TABLE 3 reports the results of applying Fieller’s method to the Monte Carlo 

experiments in TABLE 2.  The table consists of two panels.  The top panel reproduces the Type 

I error rates from TABLE 2.  The bottom panel reports the rejection rates when applying 

Fieller’s method.  While Fieller’s method does not eliminate size distortions associated with 

testing hypotheses about LRP, it does offer improvement, sometimes substantial improvement.  

Unfortunately, we will find that Fieller’s method does not generally improve hypothesis testing 

when using panel data. 

Jackknifing and indirect inference. Jackknifing (JK) and indirect inference (II) are two 

methods that have been suggested for correcting the bias associated with estimating AR/ARDL 

models in finite samples (cf., Gourieroux et al., 2010; Dhaene and Jochmans, 2015).  In this 

section, we apply these methods in order to obtain less biased estimates of 𝛽𝛽𝑦𝑦.  We then 

investigate whether this improves the corresponding LRP estimates. 

 The jackknife estimator removes bias by combining maximum-likelihood estimates 

across subsamples.  Let �̂�𝛽 be the maximum-likelihood based estimator of 𝛽𝛽 using a full sample 

of observations ordered by time.  Let this sample be given by 𝑆𝑆 = {1, … ,𝑇𝑇}.  We create two 

subsamples, 𝑆𝑆1 = {1, …,  
𝑇𝑇
2

}  and 𝑆𝑆2 = {𝑇𝑇2 + 1, … ,𝑇𝑇}, and estimate 𝛽𝛽 separately on each 

subsample.   Denote these estimates �̂�𝛽𝑆𝑆1 and �̂�𝛽𝑆𝑆2.  The corresponding jackknife estimator is 

�̂�𝛽𝐽𝐽𝐽𝐽 = 2�̂�𝛽 − 0.5(�̂�𝛽𝑆𝑆1 + �̂�𝛽𝑆𝑆2) .  �̂�𝛽𝐽𝐽𝐽𝐽 will have smaller bias than the original estimator, �̂�𝛽; but -- 

as is apparent from its mathematical expression -- it will have larger variance. 
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 Indirect inference is a simulation-based method for bias reduction. Suppose the true 

DGP takes the form 𝑦𝑦𝑡𝑡 = 𝐹𝐹(𝑦𝑦𝑡𝑡−1, 𝑥𝑥𝑡𝑡|𝜽𝜽).  In our case, 𝜽𝜽 is a vector (𝜷𝜷,𝜎𝜎), where 𝜷𝜷 consists of 

the regression parameters (𝛽𝛽0,𝛽𝛽𝑥𝑥,𝛽𝛽𝑦𝑦) and 𝜎𝜎 is the standard error of the regression error term.  

Suppose that 𝜽𝜽� = (𝜷𝜷� ,𝜎𝜎�) is an estimator of θ based on observed data.  The II procedure is 

carried out in three steps.  Step 1 generates a sequence of random errors of length T from the 𝐹𝐹 

distribution conditional on the estimated parameter 𝜽𝜽�.  Step 2 chooses values for the parameter 

vector 𝜷𝜷 using {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇  and the simulated random errors in Step 1 to generate the sequence 

{𝑦𝑦�𝑡𝑡(𝜷𝜷)}𝑡𝑡=1𝑇𝑇 .  The {𝑦𝑦�𝑡𝑡(𝜷𝜷)}𝑡𝑡=1𝑇𝑇  and {𝑥𝑥𝑡𝑡}𝑡𝑡=1𝑇𝑇  values are then used to calculate an estimate of 𝜷𝜷, 

𝛿𝛿(𝜷𝜷).  Step 3 repeats Steps 1 and 2 M times (M simulations) for a given set of 𝜷𝜷 values, 

producing the estimates {𝛿𝛿𝑚𝑚(𝜷𝜷)}𝑚𝑚=1
𝑀𝑀 .  The bias-reduced estimator is obtained by 𝜷𝜷�𝑰𝑰𝑰𝑰 =

𝑣𝑣𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝛽𝛽(𝜷𝜷� −  1
𝑀𝑀
∑ 𝛿𝛿𝑚𝑚(𝜷𝜷)}𝑀𝑀
𝑚𝑚=1 ), where 𝜷𝜷� is the parameter estimate based on observed data.  

The central idea of indirect inference is to choose 𝜷𝜷 so that 𝛿𝛿(𝜷𝜷) and  𝜷𝜷� are as close as possible.   

 We first demonstrate that jackknifing and indirect inference are effective at reducing 

the bias associated with estimating 𝛽𝛽𝑦𝑦 in Equation (4).  The top panel of TABLE 4 reports the 

OLS estimates of 𝛽𝛽𝑦𝑦.  The next two panels report the JK and II estimates.  As before, the Monte 

Carlo experiments have 𝛽𝛽𝑦𝑦 take values 0.60, 0.70, 0.80, 0.90, and 0.95.  Sample sizes range 

from T=10 to T=1000.   

 As was foreshadowed by TABLE 1, OLS estimates of 𝛽𝛽𝑦𝑦 in the ARDL model are 

downwardly biased in finite samples.  For example, when 𝛽𝛽𝑦𝑦 = 0.80 and T=10, the average 

OLS estimate of 𝛽𝛽𝑦𝑦 is 0.62.  In contrast, the corresponding, average JK and II estimates are 

0.76 and 0.78.  That these latter two estimates are close to the true value of 𝛽𝛽𝑦𝑦 even for T=10 

is testimony to the effectiveness of these procedures to reduce Hurwicz bias.  In fact, the JK 

and II estimates of 𝛽𝛽𝑦𝑦 dominate the OLS estimates on the dimension of bias across the full 
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range of 𝛽𝛽𝑦𝑦 and T values.  Unfortunately, these improvements do not translate into better 

estimates of LRP. 

 TABLE 5 reports 90 percent empirical sample ranges for the JK and II estimators and 

compares them those for OLS.  The top panel reproduces the OLS intervals from TABLE 2.  

The next two panels report the JK and II estimates.  Generally speaking, the ranges are wider, 

often substantially wider, for the JK and II estimates.  For example, when 𝛽𝛽𝑦𝑦 = 0.80 and T=50, 

OLS estimates of the ARDL model produce LRP values that range from 2.4 to 8.1, 

encompassing the true value of 5.  This compares with 2.3 to 15.9, and 2.7 to 12.4 for the JK 

and II estimates, respectively.   

 This poorer performance of the JK and II estimators occurs despite the fact that these 

estimators generally produce median LRP values that are closer to their true values (not 

reported).  However, the greater variance of these estimators generally dominates the smaller 

bias, so that the sample ranges are wider, and the associated estimates less efficient. 

 
3.  EXTENDING THE ANALYSIS TO PANEL DATA AND NONSTATIONARITY 
 
Panel data.  In this section, we extend the analysis to more practical situations by studying the 

problem in a panel data setting.  The DGP for our experiments is given by: 

(7) 𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑡𝑡  + 𝛽𝛽𝑦𝑦𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝜀𝜀𝑖𝑖𝑡𝑡, 𝑖𝑖 =  1,2, … ,𝑁𝑁, 𝑡𝑡 =  1,2, . . . ,𝑇𝑇,  

where N=50, T=10, 𝛽𝛽0 = 0, 𝛽𝛽𝑥𝑥 = 1, and 𝛽𝛽𝑦𝑦 again takes values 0.60, 0.70, 0.80, 0.90, and 0.95.  

The error term, 𝜀𝜀𝑖𝑖𝑡𝑡, is comprised of a fixed effect and a classical error term, 𝜀𝜀𝑖𝑖𝑡𝑡 = 𝑣𝑣𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑡𝑡 ,   

where each of these components are independently and identically standard normally 

distributed, 𝑣𝑣𝑖𝑖,𝑢𝑢𝑖𝑖𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1).  The fixed effects are constructed to be uncorrelated with 𝑥𝑥𝑖𝑖𝑡𝑡, 

so there is no associated endogeneity.  We do this to focus attention on the problem of 

estimating LRP, without introducing additional bias issues.   
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 Given the values of 𝛽𝛽𝑦𝑦, the true LRP values are, again, 2.5, 3.3, 5, 10, and 20, 

respectively.  We estimate the model using four dynamic panel data (DPD) estimators: 

Dynamic Fixed Effects (DFE)5, Anderson-Hsaio (AH)6, Difference GMM (DGMM)7, and 

System GMM (SGMM)8.  The results are reported in TABLE 6 and again consist of three 

panels: (i) the median estimated LRP values, (ii) the 90 percent empirical sample ranges of 

LRP values, and (iii) the Type I error rates.  The performance results for each of the four DPD 

estimators are reported by columns. 

 Substantial biases in the LRP estimates are evident for all values of 𝛽𝛽𝑦𝑦, with the biases 

again getting worse as 𝛽𝛽𝑦𝑦 gets closer to one.  For example, when 𝛽𝛽𝑦𝑦 = 0.80,  the median LRP 

estimates for the DFE, AH, DGMM, and SGMM estimators are 3.1, 2.4, 3.4, and 4.6 (compared 

to a true value of 5).  The 90 percent empirical sample ranges perform erratically.  The 90 

percent intervals for the DFE and DGMM estimators do not contain the true value.  The 90 

percent interval for the AH estimator does contain the true value, but it is very wide, ranging 

from -14.4 to 18.3.   

In contrast, the SGMM estimator performs relatively well, with its median value 

coming closest to the true LRP, and the 90 percent sample range including the true value.  

Unfortunately, the relative performance of the SGMM estimator declines dramatically as 𝛽𝛽𝑦𝑦 

gets close to one.  When 𝛽𝛽𝑦𝑦 = 0.95, the median estimated value of LRP is 58.7 (compared to 

its true value of 20), and the associated 90 percent  interval range extends from -507.2 to 597.5.  

This behaviour is characteristic of the SGMM estimator. 

                                                      
5 See Blackburne and Frank (2007).  To obtain DFE estimates of LRP for TABLE 6, we estimate Equation (7) 
using OLS with fixed effects, and calculate LRP according to Equation (2).  
6 See Anderson, and Hsiao (1981).  To obtain AH estimates of LRP for TABLE 6, we estimate Equation (7) using 
the xtivreg procedure in Stata, and calculate LRP according to Equation (2). 
7 See Holtz-Eakin et al., (1988) and Arellano and Bond (1991). To obtain DGMM estimates of LRP for TABLE 
6, we estimate Equation (7) using the xtabond procedure in Stata, and calculate LRP according to Equation (2). 
8 See Blundell and Bond (1998).  To obtain SGMM estimates of LRP for TABLE 6, we estimate Equation (7) 
using the xtdpdsys procedure in Stata, and calculate LRP according to Equation (2). 
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Finally, we note that the Type I error rates are very poor across the board, with size 

distortions sufficiently large so as to render hypothesis testing useless. 

Nonstationarity and cointegration.  TABLE 7 explores the consequences of 

nonstationarity in both univariate time series and panel data settings.  The first three columns 

use the univariate time series DGP of Equation (5) with T = 10, 50, and 1000, respectively.  

The next two columns use the panel DGP of Equation (7) with (N=50, T=10) and (N=50, 

T=25).  The top part of the table reports results when 𝛽𝛽𝑦𝑦 = 0.60 and LRP = 2.5.  For the bottom 

part of the table, 𝛽𝛽𝑦𝑦 = 0.90 and LRP = 10. Moving across rows allows one to identify the 

impact of increasing the length of the time series.  A comparison of the top and bottom panels 

allows one to identify the effect of increasing 𝛽𝛽𝑦𝑦. 

In the univariate time series experiments, we let 𝑥𝑥𝑡𝑡 = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡−1 + 𝜈𝜈𝑡𝑡, 𝜈𝜈𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1).  In 

the stationary case (Case a), 𝜌𝜌𝑥𝑥 = 0.  In the nonstationary case (Case b), 𝜌𝜌𝑥𝑥 = 1 and x and y 

are cointegrated.  We follow a similar procedure for the panel data experiments.  Comparison 

of Cases a) and b) allow us to study the effect of nonstationarity on estimator performance.  

Finally, for our estimator, we use Dynamic OLS (DOLS) for the univariate time series, and 

Panel Dynamic OLS (Panel DOLS) for the panel data.9  These estimators are designed to 

estimate long-run relationships when data are cointegrated.  TABLE 7 reports the results, using 

the tri-partite performance measures of (i) median value of LRP, (ii) 90 percent empirical 

sample range of estimated LRP values, and (iii) Type I error rate. 

In all the experiments, and on all three performance measures, the DOLS estimator 

produces better results when 𝜌𝜌𝑥𝑥 = 1 (Case b) compared to 𝜌𝜌𝑥𝑥 = 0 (Case a).  This is to be 

expected, as the DOLS estimator is designed for cointegrated data.  However, the performance 

                                                      
9 To obtain DOLS estimates of LRP for the univariate time series section of TABLE 7, we regress y on x using 
the user-written Stata program cointreg (see Wang and Wu, 2012). To obtain Panel DOLS estimates of LRP for 
the panel data section of TABLE 7, we regress y on x using the user-written Stata program xtdolshm (see Kao and 
Chiang, 2002). 



11 
 

of the estimator declines as 𝛽𝛽𝑦𝑦 get close to one.  For example, in Column (5), when 𝛽𝛽𝑦𝑦 = 0.60 

and (N = 50, T = 25), the median estimated value of LRP = 2.5, equal to its true value.  Further 

the 90 percent sample range is tightly clustered around the true value, ranging from 2.4 to 2.5.  

However, when 𝛽𝛽𝑦𝑦 = 0.90, the median estimated value is 8.9, and the 90 percent interval no 

longer contains the true value.  In all the experiments, hypothesis testing continues to be 

unreliable, with Type I error rates far from their true values, even in those cases where the 

DOLS estimator performs well on other dimensions. 

The experiments of TABLES 6 and 7 highlight a number of issues for estimation of 

LRP.  First, the performance of different panel data estimators vary widely, with some 

performing consistently better than others (for example, compare the 90 percent estimation 

intervals for the DFE and Anderson-Hsaio estimators in TABLE 6).  Second, the relative 

performances of the respective estimators can differ substantially depending on the value of 

𝛽𝛽𝑦𝑦.  This can be seen by comparing the relative performances of the SGMM estimator in 

TABLE 6 when 𝛽𝛽𝑦𝑦 = 0.60 and 𝛽𝛽𝑦𝑦 = 0.95.  Third, persistence in the explanatory variable 

affects estimator performance, as evidenced by Cases a) and b) in TABLE 7.  And, lastly, 

hypothesis testing is generally unreliable.  

 
4.  ESTIMATION OF LRP USING PANEL DATA 

 The final set of experiments is designed to compare the relative performances of a large 

number of panel data estimators.  The ultimate goal is to develop a set of recommendations 

about which estimator(s) are “best” in a given research situation.  While these experiments are 

designed to move closer to this goal, the results should be interpreted as preliminary, as they 

abstract away from a large number of issues.  We study the following panel data estimators:  

A. Anderson-Hsaio (AH) 

B. Difference GMM (DGMM) 

C. System GMM (SGMM) 
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D. Mean Group estimation of the ARDL model (MG1)10 

E. Correlated Effect Mean Group (CCEMG)11 

F. Augmented Mean Group (AMG)12 

G. Dynamic Fixed Effects (DFE)13 

H. Mean Group estimation of the growth model (MG2)14 

I. Panel Dynamic OLS (DOLS) 

The experiments use the DGP of Equation (7) where N=50 and T=25.  Because it is common 

in the macro panel literature to transform annual data into period averages, we also consider 

the case where N = 50 and T=5, where the 25 years of annual data have been collapsed into 5 

observations of 5-year averages.  We conduct separate experiments for the cases 𝛽𝛽𝑦𝑦 = 0.60 

and 𝛽𝛽𝑦𝑦 = 0.90, and for different degrees of persistence in x, 𝑥𝑥𝑖𝑖𝑡𝑡 = 𝜌𝜌𝑥𝑥𝑥𝑥𝑖𝑖,𝑡𝑡−1 + 𝑣𝑣𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑡𝑡,   

𝑣𝑣𝑖𝑖, 𝜈𝜈𝑡𝑡~𝑁𝑁𝑁𝑁𝑁𝑁(0,1), where 𝜌𝜌𝑥𝑥 = 0, 0.5, 0.90, 0.95, and 1. Finally, rather than reporting 90 

percent intervals of LRP estimates, we report the associated mean squared error (MSE) 

values.15 The results of our experiments are presented in TABLES 8A through 8I.16  A number 

of findings are worth highlighting. 

For all estimators other than the Anderson-Hsaio estimator (TABLE8A), taking 5-year 

averages rather than using annual data results in less efficient estimates of LRP.17  This is true 

                                                      
10 See Pesaran and Smith (1995). To obtain MG1 estimates of LRP for TABLE 8, we estimate Equation (7) using 
the user-written, Stata program xtmg (see Eberhardt, 2012), and calculate LRP according to Equation (2). 
11 See Pesaran (2006). To obtain CCEMG estimates of LRP for TABLE 8, we estimate Equation (7) using the 
user-written, Stata program xtmg (see Eberhardt, 2012), and calculate LRP according to Equation (2). 
12 See Eberhardt (2012). To obtain AMG estimates of LRP for TABLE 8, we estimate Equation (7) using the user-
written, Stata program xtmg (see Eberhardt, 2012), and calculate LRP according to Equation (2). 
13 To obtain DFE estimates of LRP for TABLE 8, we estimate the panel version of Equation (3.a) using the user-
written, Stata program xtpmg (see Blackburne and Frank, 2007), and calculate LRP as 𝜃𝜃�. 
14 To obtain MG2 estimates of LRP for TABLE 8, we estimate the panel version of Equation (3.a) using the user-
written, Stata program xtpmg (see Blackburne and Frank, 2007), and calculate LRP as 𝜃𝜃�. 
15 We note that some of the MSE values are exceptionally large.  When the βy values are imprecisely estimated, 
some of the estimates may be close to 1.  This makes the denominator of the LRP close to zero, which can cause 
MSE values to attain very large size. 
16 TABLES 8A to 8I are based on 1,000 simulations rather than 10,000 simulations because of the computing time 
required to run 10,000 simulations.  However, our previous analyses had indicated that there was generally little 
to be gained by increasing the number of simulations past 1000. 
17 We note that panel DOLS estimates cannot be calculated when T=5 because the use of leads and lags does not 
allow the estimator to be computed. 
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both for different values of 𝛽𝛽𝑦𝑦, and for different degrees of persistence in x.  We note that these 

findings are consistent with Ditzen and Gundlach (2016).  For example, when 𝛽𝛽𝑦𝑦 = 0.60 and 

𝜌𝜌𝑥𝑥 = 0, Difference GMM produces a MSE error value of 0.043 when the panel data consist of 

annual observations (TABLE 8B).  However, when the same data are transformed into 5 

observations of 5-year averaged data, the associated MSE increases to 0.172.  Because the AH 

estimator is dominated by other estimators, the subsequent discussion focusses on the annual 

(T=25) results. 

Another finding from TABLES 8A to 8I is that greater persistence in x is generally 

associated with less biased and more efficient LRP estimates.  For example, for the Difference 

GMM results in TABLE 8B, when 𝛽𝛽𝑦𝑦 = 0.60 -- so that the corresponding true value of LRP = 

2.5 -- the median LRP values rises from 2.3 when 𝜌𝜌𝑥𝑥 = 0, to 2.5 when 𝜌𝜌𝑥𝑥 = 1.  The 

corresponding MSE values fall from 0.043 to 0.004.  A similar, monotonic improvement for 

increases in 𝜌𝜌𝑥𝑥  is evident when 𝛽𝛽𝑦𝑦 = 0.90.  We attribute this result to the fact that Var(𝑥𝑥𝑖𝑖𝑡𝑡) 

increases with 𝜌𝜌𝑥𝑥, resulting in more precise estimates of model parameters.  This is true even 

when x is a nonstationary, random walk process.  

Finally, of the nine estimators whose performances are reported in TABLES 8A 

through 8I, three stand out on the basis of mean squared error (MSE): Difference GMM 

(TABLE 8B), System GMM (TABLE 8C), and Dynamic Fixed Effects (TABLE 8G).  For 

example, for panel datasets of size (N=50, T=25), when 𝛽𝛽𝑦𝑦 = 0.90 and LRP = 10, and there is 

no serial correlation in x (𝜌𝜌𝑥𝑥 = 0), the MSE values for the DGMM, SGMM, and DFE 

estimators are 11.8, 14.5, and 10.4, respectively.  The MSEs for the other estimators are 

194,065.6 (AH), 21.1 (MG1), 29.2 (CCEMG), 28.5 (AMG), 36,131.7 (MG2), and 81.9 

(DOLS).  

Stated differently, the corresponding 90 percent sample ranges are: 

− DGMM: (5.3 – 8.2) 
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− SGMM: (9.2 – 17.4) 
− DFE: (5.8 – 8.0) 

 
compared to: 
 

− AH: (-14.7 – 18.0) 
− MG1: (4.6 – 6.4) 
− CCEMG: (3.7 – 5.8) 
− AMG: (3.8 – 5.8) 
− MG2: (-6.0 – 23.8) 
− DOLS: (-0.1 – 2.0)18 

 
When 𝛽𝛽𝑦𝑦 is smaller and there is moderate serial correlation in x, all the panel data 

estimators perform substantially better, though DGMM, SGMM, and DFE are generally 

superior.  Below are the corresponding MSE / (90 percent sample ranges) for the respective 

estimators when 𝛽𝛽𝑦𝑦 = 0.60, LRP = 2.5, and 𝜌𝜌𝑥𝑥 = 0.5:  

− DGMM: 0.019 / (2.2 – 2.6) 
− SGMM: 0.013 / (2.3 – 2.7) 
− DFE: 0.020 / (2.3 – 2.5) 

 
compared to: 

− AH:  2500 / (1.1 – 8.0) 
− MG1: 0.055 / (2.1 – 2.4) 
− CCEMG: 0.112 / (2.0 – 2.4) 
− AMG: 0.096 / (2.0 – 2.4) 
− MG2: 0.017 / (2.3 – 2.6) 
− DOLS: 1.218 / (1.1 – 1.7) 

 
Unfortunately, as the bottom panels of TABLES 8A through 8I attest, hypothesis testing is still 

unreliable for all the estimators in almost all circumstances.   

Given that Fieller’s method provided substantial improvements for univariate time 

series, we investigate whether it can provide similar improvements for panel data.  TABLE 9 

reports our results, focusing on the DGMM, SGMM, and DFE estimators.  For each of these, 

the top panel reproduces the previously reported Type I error rates, while the bottom panel 

                                                      
18 While it might be unfair to include DOLS in this comparison of estimators with stationary data, we note that 
DOLS does not do appreciably better when x and y are nonstationary and cointegrated (ρx = 1). 
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reports Type I error rates using Fieller’s method.  The results are disappointing.  There is, at 

best, only minor improvement from adopting Fieller’s method – far less than the amount of 

improvement that would be necessary to make hypothesis testing serviceable.   

In summary, our analysis identifies three panel data estimators that perform 

substantially better than the others.  Difference GMM, System GMM, and Dynamic Fixed 

Effects were generally more efficient than other panel data estimators across a wide variety of 

data environments.  Our results suggest that when there is moderate persistence in both the 

dependent and explanatory variables, these estimators may estimate LRP sufficiently precisely 

so as to be useful in practical research situations.  That being said, our analysis has identified 

a number of problematic data scenarios.  When values of 𝛽𝛽𝑦𝑦 are close to one, none of the 

estimators perform very well.  Further, we find that hypothesis testing is generally unreliable.  

A caveat to our results is that the experiments ignore a number of factors that would be 

expected to influence the relative performance of the panel data estimators.  For example, the 

various mean group estimators should perform relatively better when slope coefficients differ 

across cross-sectional units.  However, our experiments imposed coefficient homogeneity.  

Likewise, the Common Correlated Effects Mean Group (CCEMG) and Augmented Mean 

Group (AMG) estimators should perform relatively better when common factors induce cross-

sectional dependence across observations.  Our experiments abstracted away from this issue.  

As a result, our findings should be viewed as preliminary.  Further testing in more diverse data 

environments is called for.   

 
5.  CONCLUSION 

A common practice in economic research is to calculate long-run impacts based on the 

estimated coefficients from a model involving one or more lagged dependent variables.  For 

example, given the ARDL(1,1) model, 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑥𝑥𝑡𝑡  + 𝛽𝛽𝑦𝑦𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, the long-run effect of 

x on y, also known as the long-run propensity (LRP) of x, is estimated by 𝐿𝐿𝐿𝐿𝐿𝐿 = �̂�𝛽𝑥𝑥 �1 − �̂�𝛽𝑦𝑦�� .  
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When this model is recast as a growth regression, such as ∆𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝜃𝜃𝑥𝑥𝑡𝑡) + 𝑢𝑢𝑡𝑡, or 

∆𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛿𝛿(𝑦𝑦𝑡𝑡−1 − 𝜃𝜃𝑥𝑥𝑡𝑡−1) + 𝛽𝛽𝑥𝑥∆𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡, the corresponding estimate of LRP is given by 𝜃𝜃�.  

This note uses Monte Carlo experiments to demonstrate that this practice can be hazardous.  It 

often fails to produce reliable estimates.  Biases can be substantial, sample ranges very wide, 

and hypothesis tests can be rendered useless in realistic data environments.   

 The reason for this poor performance is threefold.  First, estimates of the coefficient of 

a lagged dependent variable are downwardly biased in finite samples (Hurwicz, 1950; Phillips, 

1977).  Second, small biases in the estimate of 𝛽𝛽𝑦𝑦 will be substantially magnified in estimates 

of LRP when the value of 𝛽𝛽𝑦𝑦 is close to one.  Rewriting the specification as a growth equation 

does not allow one to avoid this problem.  Finally, the statistical distribution associated with 

estimates of LRP is heavy tailed and complicated.   While some of these problems have 

previously been identified in the literature, the widespread use of these procedures suggests 

that researchers may not be aware of the practical significance of these problems.  By 

demonstrating their extent and severity, it is hoped that this study will stimulate further research 

towards the estimation of long-run impacts.   

Our study also makes some contributions about what to do and what not to do when it 

comes to estimating long-run impacts.  First, our experiments indicate that the practice of data 

averaging – where a researcher takes, say, 25 years of annual data and transforms these into 

five observations of 5-year averaged data – generally results in less efficient estimates of LRP¸ 

and that the loss in efficiency can be substantial.  Second, we demonstrate that some estimators 

perform systematically better than others.  While our results are not sufficiently extensive to 

be prescriptive, they do indicate that further research comparing estimators in a wider variety 

of data environments could result in recommendations for applied researchers.  Third, our 

results indicate that neither (i) Fieller’s method, nor (ii) jackknifing, nor (iii) indirect inference 

provide general solutions for estimating LRP with panel data.  By eliminating these 
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possibilities, it is hoped that researchers can concentrate on other, more promising directions.  

Lastly, we are able to show that conventional hypothesis testing is generally unreliable when 

testing hypotheses about LRP.  Other approaches, such as bootstrapping, should be explored.  
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TABLE 1 
Demonstration of Finite-Sample Bias in OLS Estimation of an AR Model  

 
 

True Value of 
𝜷𝜷𝒚𝒚 

SAMPLE SIZE 

T=10 T=30 T=50 T=100 T=1000 

Average Estimated Value of 𝜷𝜷𝒚𝒚 

0.60 0.34 0.51 0.54 0.57 0.60 

0.70 0.41 0.60 0.64 0.67 0.70 

0.80 0.48 0.68 0.73 0.77 0.80 

0.90 0.53 0.77 0.82 0.86 0.90 

0.95 0.55 0.81 0.86 0.91 0.95 

Type I Error Rate (H0: 𝜷𝜷𝒚𝒚 = true value) 

0.60 0.07 0.06 0.06 0.05 0.05 

0.70 0.07 0.07 0.06 0.06 0.05 

0.80 0.09 0.09 0.08 0.07 0.05 

0.90 0.13 0.12 0.10 0.08 0.05 

0.95 0.16 0.16 0.15 0.11 0.06 
 
 

SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 2 of the text.  
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TABLE 2 
Estimation of LRP in an ARDL Model: OLS 

 
True Value of 𝜷𝜷𝒚𝒚 / 

True Value of 
LRP 

SAMPLE SIZE 
T=10 T=50 T=1000 

Median Value of Estimated LRP 

0.60 / 2.5 1.9 2.4 2.5 

0.70 / 3.3 2.1 3.1 3.3 

0.80 / 5 2.5 4.4 5.0 

0.90 / 10 2.8 7.5 9.9 

0.95 / 20 2.8 11.2 19.4 

90 Percent Empirical Sample Range for Estimated LRP 

0.60 / 2.5 0.4  —  6.5 1.5  —  3.6 2.3  —  2.7 

0.70 / 3.3 0.3  —  9.0 1.9  —  5.0 3.0  —  3.7 

0.80 / 5 -0.6  —  13.4 2.4  —  8.1 4.4  —  5.6 

0.90 / 10 -11.3  —  20.4 3.3  —  19.1 8.3  —  11.6 

0.95 / 20 -21.3  —  25.6 3.8  —  44.4 15.3  —  24.8 

Type I Error Rate (H0: LRP = true value) 

0.60 / 2.5 0.23 0.09 0.05 

0.70 / 3.3 0.29 0.12 0.05 

0.80 / 5 0.38 0.17 0.06 

0.90 / 10 0.54 0.27 0.06 

0.95 / 20 0.67 0.40 0.09 
 
 

SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 2 of the text.  
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TABLE 3 
Testing LRP in an ARDL Model: Wald Versus Fieller’s Test 

 

True Value of 𝜷𝜷𝒚𝒚 / 
True Value of LRP 

SAMPLE SIZE 
T=10 T=50 T=1000 

Type I Error Rate (H0: LRP = true value)  --- Wald test 

0.60 / 2.5 0.23 0.09 0.05 
0.70 / 3.3 0.29 0.12 0.05 
0.80 / 5 0.38 0.17 0.06 
0.90 / 10 0.54 0.27 0.06 
0.95 / 20 0.67 0.40 0.09 

Type I Error Rate (H0: LRP = true value) – Fieller test 

0.60 / 2.5 0.10 0.06 0.05 
0.70 / 3.3 0.12 0.06 0.05 
0.80 / 5 0.13 0.07 0.05 
0.90 / 10 0.15 0.09 0.05 
0.95 / 20 0.17 0.11 0.06 

 
 

SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 2 of the text.  
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TABLE 4 
Comparison of Jackknifing (JK) and Indirect Inference (II)  

with OLS Estimates of  𝜷𝜷𝒚𝒚 in an ARDL Model 
 

True Value of 
𝜷𝜷𝒚𝒚  

SAMPLE SIZE 
T=10 T=30 T=50 T=100 T=1000 

OLS estimate  of  𝜷𝜷𝒚𝒚 

0.60 0.46 0.55 0.57 0.59 0.60 

0.70 0.54 0.64 0.67 0.68 0.70 

0.80 0.62 0.74 0.76 0.78 0.80 

0.90 0.70 0.83 0.86 0.88 0.90 

0.95 0.73 0.87 0.90 0.93 0.95 

Jackknifing (JK) estimate  of  𝜷𝜷𝒚𝒚 

0.60 0.57 0.60 0.60 0.60 0.60 

0.70 0.66 0.70 0.70 0.70 0.70 

0.80 0.76 0.80 0.80 0.80 0.80 

0.90 0.85 0.90 0.90 0.90 0.90 

0.95 0.89 0.95 0.95 0.95 0.95 

Indirect Inference (II) estimate  of  𝜷𝜷𝒚𝒚 

0.60 0.60 0.60 0.60 0.60 0.60 

0.70 0.69 0.70 0.70 0.70 0.70 

0.80 0.78 0.80 0.80 0.80 0.80 

0.90 0.86 0.90 0.90 0.90 0.90 

0.95 0.89 0.94 0.95 0.95 0.95 
 
SOURCE: 50,000 replications were run for T=10 cases and 10,000 replications were run for 
all other experiments.  The experiments are described in more detail in Section 2 of the text.  
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TABLE 5 
Comparison of Jackknifing (JK) and Indirect Inference (II)  

with OLS Estimates of LRP in an ARDL Model 
 

True Value of 𝜷𝜷𝒚𝒚 / 
True Value of LRP 

SAMPLE SIZE 
T=10 T=50 T=1000 

90 Percent Empirical Sample Range for Estimated LRP -- OLS 

0.60 / 2.5 0.4  —  6.5 1.5  —  3.6 2.3  —  2.7 

0.70 / 3.3 0.3  —  9.0 1.9  —  5.0 3.0  —  3.7 

0.80 / 5 -0.6  —  13.4 2.4  —  8.1 4.4  —  5.6 

0.90 / 10 -11.3  —  20.4 3.3  —  19.1 8.3  —  11.6 

0.95 / 20 -21.3  —  25.6 3.8  —  44.4 15.3  —  24.8 

90 Percent Empirical Sample Range for Estimated LRP -- JK 

0.60 / 2.5 -9.5 – 12.9 1.5 – 4.4 2.3 – 2.7 

0.70 / 3.3 -13.3 – 15.3 1.9 – 7.2 3.0 – 3.7 

0.80 / 5 -17.3 – 17.5  2.3 – 15.9 4.4 – 5.7 

0.90 / 10 -18.9 – 19.4 -32.4 – 46.3   8.4 – 12.1 

0.95 / 20 -19.7 – 19.6 -71.5 – 87.0 15.7 – 26.7 

90 Percent Empirical Sample Range for Estimated LRP -- II 

0.60 / 2.5 -11.2 – 14.9 1.6 – 4.0 2.3 – 2.7 

0.70 / 3.3 -19.1 – 20.8 2.0 – 6.0 3.0 – 3.7 

0.80 / 5 -26.5 – 28.1  2.7 – 12.4 4.4 – 5.7 

0.90 / 10 -34.8 – 33.0 -30.7 – 54.5   8.5 – 12.0 

0.95 / 20 -37.7 – 34.7 -132.1 –143.1 15.8 – 26.1 
 
SOURCE: 50,000 replications were run for T=10 cases and 10,000 replications were run for 
all other experiments.  The experiments are described in more detail in Section 2 of the text. 
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TABLE 6 
Estimation of LRP in a DPD Model (N=50, T=10): DFE, AH, DGMM, and SGMM  

 

True Value of 𝜷𝜷𝒚𝒚 / 
True Value of LRP 

ESTIMATOR 
DFE Anderson-Hsaio Difference GMM System GMM 

Median Value of Estimated LRP 

0.60 / 2.5 2.0 2.4 2.2 2.4 
0.70 / 3.3 2.4 2.8 2.7 3.1 
0.80 / 5 3.1 2.4 3.4 4.6 
0.90 / 10 4.2 1.1 4.5 11.9 
0.95 / 20 6.0 0.6 7.0 58.7 

Average 90 Percent Empirical Sample Range for Estimated LRP 

0.60 / 2.5 1.7  —  2.3 1.4  —  6.3 1.8  —  2.5 2.0  —  2.8 
0.70 / 3.3 2.1  —  2.9 -4.2  —  13.5 2.2  —  3.2 2.5  —  3.9 
0.80 / 5 2.5  —  3.8 -14.4  —  18.3 2.6  —  4.4 3.4  —  6.5 
0.90 / 10 3.3  —  5.5 -10.4  —  11.8 3.2  —  6.4 6.9  —  24.1 
0.95 / 20 4.5  —  8.2 -7.3  —  9.0 4.6  —  11.3 -507.2  —  597.5 

Average Type I Error Rate (H0: LRP = true value) 

0.60 / 2.5 0.78 0.09 0.41 0.16 
0.70 / 3.3 0.92 0.15 0.59 0.20 
0.80 / 5 0.99 0.27 0.81 0.21 
0.90 / 10 1.00 0.60 0.97 0.07 
0.95 / 20 1.00 0.76 0.96 0.02 

 
SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 3 of the text. DFE, AH, DGMM, and SGMM stand for Dynamic Fixed 
Effects, Anderson-Hsaio, Difference GMM, and System GMM. 
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TABLE 7 
Estimation of DOLS and Panel DOLS  

 

Autocorrelation 
in x (ρX) 

DOLS Panel DOLS 
T = 10 

(1) 
T = 50 

(2) 
T = 1000 

(3) 
N = 50, T = 10 

(4) 
N = 50, T = 25 

(5) 

𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 

Median Value of Estimated LRP 

a)  0 1.7 1.9 2.0 1.0 1.0 

b)  1 2.0 2.4 2.5 2.5 2.5 

90 Percent Empirical Sample Range for Estimated LRP 

a)  0 -2.2  —  5.5 0.9  —  2.9 1.8  —  2.2 0.5  —  1.5 0.7  —  1.3 

b)  1 -0.7  —  4.5 2.0  —  2.7 2.5  —  2.5 2.4  —  2.5 2.4  —  2.5 

Type I Error Rate (H0: LRP = true value) 

a)  0 0.31 0.41 1.00 1.00 1.00 

b)  1 0.35 0.42 0.44 0.00 0.18 

𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Median Value of Estimated LRP 

a)  0 1.3 2.1 2.7 1.0 1.0 

b)  1 2.7 5.7 9.7 9.0 8.9 

90 Percent Empirical Sample Range for Estimated LRP 

a)  0 -3.6  —  6.2 0.3  —  4.3 2.2  —  3.2 -0.9  —  2.9 0.0  —  2.1 

b)  1 -5.4  —  11.5 2.3  —  9.8 9.0  —  10.0 8.5  —  9.5 8.5  —  9.3 

Type I Error Rate (H0: LRP = true value) 

a)  0 0.88 1.00 1.00 1.00 1.00 

b)  1 0.80 0.89 0.91 0.82 0.99 
 

SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 3 of the text. AH, DGMM, and SGMM stand for Anderson-Hsaio, 
Difference GMM, and System GMM. 
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TABLE 8A 
Comparison of Alternative Panel Data Estimators: Anderson-Hsaio (AH) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year 
Averages (T=5) 

Median Value of Estimated LRP 

0 2.5 2.6 1.8 0.2 

0.50 2.3 3.0 4.4 0.7 

0.90 2.5 2.5 9.9 4.4 

0.95 2.4 2.2 10.0 5.6 

1 2.5 2.2 10.0 7.8 

Mean Squared Error of LRP 

0 1.033 0.993 194,064.560 9,368.067 

0.50 2,500.213 1.130 154,491.790 95.865 

0.90 84.106 0.172 8.099 31.655 

0.95 0.477 0.220 3.007 19.470 

1 0.213 0.123 1.019 5.309 

Type I Error Rate (H0: LRP = true value) 

0 0.06 0.04 0.48 0.96 

0.50 0.13 0.00 0.26 0.94 

0.90 0.08 0.08 0.02 0.98 

0.95 0.07 0.26 0.01 0.98 

1 0.04 0.38 0.00 0.81 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8B 
Comparison of Alternative Panel Data Estimators: Difference GMM (DGMM) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year 
Averages (T=5) 

Median Value of Estimated LRP 

0 2.3 2.3 6.6 4.1 

0.50 2.4 2.7 8.0 5.5 

0.90 2.5 2.7 9.6 9.1 

0.95 2.5 2.6 9.7 7.2 

1 2.5 2.4 9.9 8.3 

Mean Squared Error of LRP 

0 0.043 0.172 11.806 34.971 

0.50 0.019 0.132 4.657 32.235 

0.90 0.005 0.078 0.383 7.308 

0.95 0.005 0.041 0.244 8.892 

1 0.004 0.025 0.085 3.222 

Type I Error Rate (H0: LRP = true value) 

0 0.26 0.10 0.92 0.91 

0.50 0.19 0.04 0.66 0.60 

0.90 0.11 0.38 0.16 0.30 

0.95 0.11 0.13 0.12 0.79 

1 0.10 0.20 0.07 0.94 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8C 
Comparison of Alternative Panel Data Estimators: System GMM (SGMM) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) 

Annual 
(T=25) 

5-Year 
Averages (T=5) 

Annual 
(T=25) 

5-Year Averages 
(T=5) 

Median Value of Estimated LRP 

0 2.5 2.7 12.4 -82.1 

0.50 2.5 3.0 11.4 -75.9 

0.90 2.5 2.9 10.4 20.0 

0.95 2.5 2.8 10.3 13.9 

1 2.5 2.6 10.1 10.9 

Mean Squared Error of LRP 

0 0.024 0.407 14.542 8,052,204.400 

0.50 0.013 0.379 5.729 12,309,295.000 

0.90 0.005 0.172 0.612 124.364 

0.95 0.004 0.098 0.304 18.238 

1 0.003 0.015 0.099 1.158 

Type I Error Rate (H0: LRP = true value) 

0 0.10 0.13 0.22 0.09 

0.50 0.11 0.41 0.22 0.08 

0.90 0.11 0.93 0.22 1.00 

0.95 0.10 0.85 0.23 1.00 

1 0.18 0.56 0.30 0.85 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8D 
Comparison of Alternative Panel Data Estimators: Mean Group – ARDL (MG1) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year Averages 
(T=5) 

Median Value of Estimated LRP 

0 2.2 3.8 5.4 13.3 

0.50 2.3 3.0 6.8 11.2 

0.90 2.4 2.6 8.7 10.3 

0.95 2.4 2.6 8.9 10.2 

1 2.4 2.6 9.2 10.1 

Mean Squared Error of LRP 

0 0.113 2.976 21.087 6,235.493 

0.50 0.055 0.370 10.566 43.809 

0.90 0.015 0.030 2.046 1.258 

0.95 0.012 0.036 1.434 0.850 

1 0.009 0.018 0.852 0.539 

Type I Error Rate (H0: LRP = true value) 

0 0.74 0.40 1.00 0.01 

0.50 0.60 0.34 0.99 0.02 

0.90 0.33 0.16 0.71 0.05 

0.95 0.29 0.15 0.63 0.04 

1 0.26 0.13 0.48 0.03 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8E 
Comparison of Alternative Panel Data Estimators: Common Correlated Effect Mean 

Group (CCEMG) 
 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) 

Annual 
(T=25) 

5-Year Averages 
(T=5) 

Annual 
(T=25) 

5-Year Averages 
(T=5) 

Median Value of Estimated LRP 

0 2.1 3.5 4.6 8.5 

0.50 2.2 2.9 5.6 9.4 

0.90 2.3 2.7 7.0 9.7 

0.95 2.3 2.6 7.2 9.9 

1 2.3 2.6 7.6 9.6 

Mean Squared Error of LRP 

0 0.173 5,349.265 29.167 122,592.010 

0.50 0.112 494.082 19.164 127,580.940 

0.90 0.049 18.470 9.310 2,682.697 

0.95 0.045 474,147.790 8.023 12,517.638 

1 0.038 8.146 6.631 6,057.932 

Type I Error Rate (H0: LRP = true value) 

0 0.82 0.03 1.00 0.12 

0.50 0.80 0.04 1.00 0.10 

0.90 0.67 0.04 0.97 0.12 

0.95 0.66 0.03 0.93 0.10 

1 0.60 0.04 0.92 0.11 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8F 
Comparison of Alternative Panel Data Estimators: Augmented Mean Group (AMG) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year Averages 
(T=5) 

Median Value of Estimated LRP 

0 2.1 3.8 4.6 12.2 

0.50 2.2 2.9 5.9 11.3 

0.90 2.3 2.6 7.9 10.3 

0.95 2.4 2.6 8.2 10.2 

1 2.4 2.6 8.6 10.1 

Mean Squared Error of LRP 

0 0.183 128.699 28.497 3,512.523 

0.50 0.096 3.787 16.751 3,871.171 

0.90 0.033 0.314 5.097 11.598 

0.95 0.028 0.161 3.724 10.221 

1 0.022 0.207 2.536 9.747 

Type I Error Rate (H0: LRP = true value) 

0 0.91 0.07 1.00 0.04 

0.50 0.82 0.10 1.00 0.04 

0.90 0.60 0.07 0.91 0.05 

0.95 0.56 0.07 0.86 0.04 

1 0.50 0.07 0.75 0.05 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8G 
Comparison of Alternative Panel Data Estimators: Dynamic Fixed Effects (DFE) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year 
Averages (T=5) 

Median Value of Estimated LRP 

0 2.3 1.9 6.8 4.7 

0.50 2.4 2.4 8.2 7.7 

0.90 2.5 2.7 9.6 14.2 

0.95 2.5 2.7 9.7 13.2 

1 2.5 2.6 9.9 11.5 

Mean Squared Error of LRP 

0 0.053 0.374 10.449 28.082 

0.50 0.020 0.042 3.675 6.586 

0.90 0.003 0.052 0.284 20.482 

0.95 0.003 0.038 0.176 12.384 

1 0.002 0.016 0.060 2.511 

Type I Error Rate (H0: LRP = true value) 

0 0.42 0.67 0.98 0.98 

0.50 0.26 0.09 0.79 0.45 

0.90 0.10 0.61 0.23 0.91 

0.95 0.10 0.64 0.18 0.96 

1 0.09 0.47 0.10 0.81 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8H 
Comparison of Alternative Panel Data Estimators: Mean Group – Growth (MG2) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) 

Annual 
(T=25) 

5-Year 
Averages (T=5) Annual (T=25) 5-Year Averages 

(T=5) 

Median Value of Estimated LRP 

0 2.41 2.34 7.74 3.45 

0.50 2.42 2.86 8.93 4.58 

0.90 2.46 2.98 10.00 10.83 

0.95 2.46 2.93 10.00 11.37 

1 2.47 2.84 10.01 11.23 

Mean Squared Error of LRP 

0 0.034 842.337 36,131.667 8,328.382 

0.50 0.017 3,981.552 8,703.481 13,259.008 

0.90 0.007 2,063.033 6,481.592 52,157.935 

0.95 0.006 101.173 15,903.411 1,728,054.700 

1 0.004 25.793 28.286 25,414.063 

Type I Error Rate (H0: LRP = true value) 

0 0.14 0.04 0.26 0.33 

0.50 0.14 0.05 0.12 0.15 

0.90 0.11 0.35 0.06 0.01 

0.95 0.11 0.35 0.05 0.03 

1 0.10 0.33 0.07 0.03 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 8I 
Comparison of Alternative Panel Data Estimators: Dynamic OLS (DOLS) 

 

 𝜷𝜷𝒚𝒚 = 0.60, LRP = 2.5 𝜷𝜷𝒚𝒚 = 0.90, LRP = 10 

Autocorrelation 
in x (ρX) Annual (T=25) 5-Year 

Averages (T=5) Annual (T=25) 5-Year 
Averages (T=5) 

Median Value of Estimated LRP 

0 1.0 --- 1.0 --- 

0.50 1.4 --- 2.0 --- 

0.90 2.3 --- 5.7 --- 

0.95 2.4 --- 6.7 --- 

1 2.4 --- 7.4 --- 

Mean Squared Error of LRP 

0 2.301 --- 81.870 --- 

0.50 1.218 --- 64.348 --- 

0.90 0.080 --- 19.012 --- 

0.95 0.031 --- 11.182 --- 

1 0.013 --- 7.171 --- 

Type I Error Rate (H0: LRP = true value) 

0 1.00 --- 1.00 --- 

0.50 1.00 --- 1.00 --- 

0.90 0.89 --- 1.00 --- 

0.95 0.74 --- 1.00 --- 

1 0.57 --- 1.00 --- 
 

SOURCE: 1000 replications were run for each experiment.  The experiments are 
described in more detail in Section 4 of the text.   
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TABLE 9 
Does Fieller’s Method Improve Hypothesis Testing in Panel Data Context? 

 
 

Autocorrelation 
in x (ρX) 

True Value of 𝜷𝜷𝒚𝒚 
0.60 0.70 0.80 0.90 0.95 

DYNAMIC FIXED EFFECTS 

Type I Error Rate (H0: LRP = true value)  --- Wald test 

0.60 0.42 0.60 0.81 0.98 0.98 
0.70 0.26 0.36 0.53 0.80 0.88 
0.80 0.10 0.13 0.18 0.24 0.29 
0.90 0.10 0.12 0.14 0.17 0.20 
0.95 0.09 0.09 0.11 0.10 0.12 

Type I Error Rate (H0: LRP = true value)  --- Fieller test 

0.60 0.37 0.55 0.76 0.95 0.96 
0.70 0.23 0.32 0.48 0.73 0.81 
0.80 0.09 0.11 0.16 0.21 0.23 
0.90 0.10 0.11 0.13 0.16 0.17 
0.95 0.08 0.08 0.10 0.09 0.10 

DIFFERENCE GMM 

Type I Error Rate (H0: LRP = true value)  --- Wald test 

0.60 0.26 0.40 0.62 0.91 0.87 
0.70 0.19 0.26 0.39 0.66 0.75 
0.80 0.11 0.11 0.14 0.14 0.20 
0.90 0.11 0.12 0.13 0.12 0.14 
0.95 0.10 0.09 0.09 0.07 0.07 

Type I Error Rate (H0: LRP = true value)  --- Fieller test 

0.60 0.22 0.34 0.53 0.84 0.75 
0.70 0.16 0.21 0.34 0.56 0.58 
0.80 0.10 0.10 0.11 0.11 0.15 
0.90 0.09 0.10 0.10 0.10 0.10 
0.95 0.10 0.08 0.08 0.06 0.07 

 
 
 
 
 



38 
 

 

Autocorrelation 
in x (ρX) 

True Value of 𝜷𝜷𝒚𝒚 
0.60 0.70 0.80 0.90 0.95 

SYSTEM GMM 

Type I Error Rate (H0: LRP = true value)  --- Wald test 

0.60 0.10 0.13 0.11 0.20 0.16 
0.70 0.11 0.10 0.10 0.24 0.68 
0.80 0.11 0.09 0.09 0.20 0.63 
0.90 0.10 0.10 0.13 0.23 0.56 
0.95 0.18 0.18 0.25 0.32 0.29 

Type I Error Rate (H0: LRP = true value)  --- Fieller test 

0.60 0.11 0.11 0.13 0.41 0.97 
0.70 0.11 0.10 0.11 0.37 0.95 
0.80 0.10 0.09 0.09 0.25 0.69 
0.90 0.10 0.10 0.13 0.24 0.59 
0.95 0.18 0.18 0.25 0.32 0.30 

 
 

SOURCE: 10,000 replications were run for each experiment.  The experiments are described 
in more detail in Section 2 of the text.  
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