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S. Hogan A New Existence and Uniqueness Theorem for Continuous Games 

Abstract: 

This paper derives a general sufficient condition for existence and uniqueness in 

continuous games using a variant of the contraction mapping theorem applied to mapping 

from a subset of the real line on to itself.  We first prove this contraction mapping 

variant, and then show how the existence of a unique equilibrium in the general game can 

be shown by proving the existence of a unique equilibrium in an iterative sequence of 

games involving such R  mappings. Finally, we show how a general condition for 

this to occur is that a matrix derived from the Jacobean matrix of best-response functions 

be have positive leading principal minors, and how this condition generalises some 

existing uniqueness theorems for particular games.  

-to-R
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A New Existence and Uniqueness Theorem for Continuous Games 

1. Introduction: 

Many oligopoly models fall into the class of continuous games in which each 

player chooses a strategy from a connected subset of the real line. For example, in 

Cournot models, each firm chooses a quantity to produce, in product differentiation 

models firms typically choose a price, and so on.  

Conditional on showing existence, there are a number of conditions that have been 

found for particular subsets of this general class of models, which can be used to prove 

uniqueness of the equilibrium.1 Generally, these involve a trade-off between generality 

and ease of application. For instance, the contraction mapping theorem offers a general 

sufficient condition for uniqueness, but for it to be useable, one needs to show that the 

particular mapping for which a fixed point defines an equilibrium constitutes a 

contraction mapping, a task that is not always straightforward. At the opposite end of the 

generality/usability continuum, are uniqueness conditions that are specific to particular 

applications.  For instance, conditions for a unique equilibrium in the Cournot quantity-

setting oligopoly model have been derived by Szidarovszky and Yakowitz (1977), 

Gaudet and Salant (1991), and Long and Soubeyran (2000).  

Between these two extremes, there are a number of general uniqueness conditions 

that can be expressed in terms of the signs of the principal minors of a matrix derived 

from the Jacobean matrix of best-response functions. These include results derived from 

the Gale and Nikaido (1965) theorem on univalent mappings, and results making use of 

the Poincare-Hopf index theorem. (See, for example, Simsek, Ozdaglar, and Acemoglu, 

2007.)  

A limitation of these uniqueness results, however, is that they depend on a prior 

demonstration of existence, and that, to the extent that existence is proved by use of the 

                                                 

1  A good survey of existing uniqueness theorems is contained in Cachon and Netessine (2004). 
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Brouwer or Kakutani fixed-point theorems, this implies a requirement that the strategy 

space be bounded.  

For this reason, it is desirable to find easy-to-apply conditions under which the 

contraction-mapping theorem can be used to show uniqueness, since the contraction 

mapping theorem provides a quite general condition for there to be a unique fixed point, 

with the added benefit that it guarantees existence without the requirements that the 

space being mapped onto itself be convex or bounded.  

In this paper, we derive a variant of the contraction mapping theorem, and present 

an approach in which this variant is applied iteratively to generate a new fixed-point 

theorem, which, like the contraction mapping theorem, implies both existence and 

uniqueness without the requirement that the strategy space be bounded. The conditions 

for this theorem can, like the univalence and index-theorem results referred to above, be 

expressed in terms of this signs of the principal minors of a matrix derived from the 

Jacobean matrix of best-response functions.  

The contribution of this paper is threefold: First, the theorem derived in this paper 

offers a slight generalisation of the P-matrix results derived from the Gale-Nikkaido 

theorem or index theory in the case where the strategy-space is bounded; second, and 

most important, by showing existence in cases where the strategy space is unbounded, it 

extends those existing uniqueness results to the unbounded case; and third, the derivation 

does not rely on concepts from differential topology, and so is perhaps more accessible 

than those derived from index theory.   

In the next section, we present the contraction mapping theorem and a related, less-

restrictive theorem for the special case of a mapping from a subset of the real line onto 

itself. Section 3 lays out the general problem and shows by example why the 

conventional characterisation of an equilibrium as a fixed point of an  mapping 

is too restrictive. Sections 4 shows how an equilibrium in the general game can be 

defined in terms of a sequence of contraction mappings involving   mappings; 

Section 5 then shows how the existence and uniqueness condition derived iteratively in 

-to-nR R

1 1-to-R R

n
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this way can be represented in terms of the slopes of the best-response functions of each 

player. Section 6 shows how this general condition encompasses and generalises many 

existing results. Section 7 concludes. 

2. The Contraction Mapping Theorem and a Related Result. 

A. The Contraction Mapping Theorem in Euclidean Space. 

Typically in oligopoly models, the existence of an equilibrium is proved by 

showing the existence of a fixed point in a mapping from a subset of Euclidean space 

onto itself. Let  be a subset of  and let  be a single-valued function 

mapping  onto itself. In this context, the definition of a contraction mapping and the 

contraction mapping theorem are as follows:  

X ,nR :f 6X X

X

Definition 1: 

If there exists (0,1)β ∈  and a norm x  such that  

  ( ) ( ) , ,f f β− ≤ − ∀ ∈y x y x x y X  (1) 

then f is a contraction mapping.  

Theorem 1 (The Contraction Mapping Theorem): 

If X  is a closed subset of  and f is a contraction mapping, then nR

a) (existence and uniqueness) there exists a unique fixed point  such that *x ∈X

( *) *,f x x=  

b)  (convergence) for any x∈X  and  1,n ≥ ( ) * * .n nf x x x xβ− ≤ −  

The contraction mapping theorem has three advantages over the Brouwer or 

Kakutani fixed point-theorems if a contraction mapping can be shown to exist: First, and 

most importantly, it shows uniqueness as well as existence; second, it does not require 

that the set  be bounded; and third, it has the convergence property.  X

 Page 3 
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The convergence property implies that the unique fixed point can easily be found 

numerically. It can be useful in a game-theoretic context if we imagine the Nash 

equilibrium to be one iteration of a repeated game, as it suggests that the Nash-

equilibrium outcome can be stable in the sense that if every period each player chooses 

the best response to the previous-period strategies of the other players, the game will 

converge to the unique equilibrium.  

Such dynamic interpretations of a static equilibrium are not always appropriate, 

however, and numerical solveability is rarely important. If we only require existence and 

uniqueness and not convergence, we can, in principle, relax Condition (1). We do this 

below for the case of case of  mappings.  1-to-R R1

1

B. The Contraction Mapping Theorem in Space. 1R

In this paper, we show how existence of an equilibrium that is a point in Euclidean 

n space, can be represented as a set of fixed points of a sequence of mappings from the 

real line onto itself. For  mappings, the natural norm to use is the absolute 

value, 

1-to-R R

,x x=  and the definition of a contraction mapping becomes as follows:  

Definition 2: 

If there exists (0,1)β ∈  such that  

  
( ) ( )

,
f y f x

x y
y x

β
−

≤ ∀ ∈
−

X,  (2) 

then f is a contraction mapping.  

In words, this says that the straight line between any two points on the graph of the 

function, must have a slope in the interval (-1,1). If, we don’t require the convergence 

property, we only require that the slope be less than 1 and that the function be 

continuous. We will define such a function as a “quasi-contraction mapping”.  



S. Hogan A New Existence and Uniqueness Theorem for Continuous Games 

 Page 5 

Definition 3: 

If there exists (0,1)β ∈  such that  

  ( ) ( ) ,f x f y x y
x y

β−
≤ ∀ ∈

−
X,  (3) 

and if f is continuous on then f is a quasi-contraction mapping.  ,X

This gives us the following variant of the contraction mapping theorem:  

Theorem 2: 

If  is a closed, connected subset of  and f is a quasi-contraction mapping, then 

there exists a unique fixed point, 

X R

* ,x ∈X  such that ( *) *.f x x=  

Proof:  

First we show that a fixed point must exist. For any 0 ,x ∈X  we have 0( ) ,0f x x≥  or 

0 0( ) .f x x≤  If 0 0( ) ,f x x≥  then define,  

  
{ }

0 0 0

max if  is bounded above

( ) otherwise
1

x x
y f x xβ

β

⎧ ∈
⎪= ⎨ −
⎪ −⎩

X X
. (4) 

If is not bounded above, we have, from X (3) and (4), 

  0 0 0( ) ( ) ( )0f y f x y xβ− ≤ −  

  ⇒ 0 0 0( ) ( ) 0f y y f x xβ β≤ + −  

  ⇒ 0 0( ) .f y y≤  

If is not bounded above, we have directly that  X

  0 0( ) .f y y≤  

By the intermediate value theorem, therefore, there exists 0 0* [ , ]x x y∈  such that 

( *) *.f x x=  A similar argument holds if 0 0( ) .f x x≤   

To show uniqueness, let *x ∈X  be a fixed point of f. Then *,x x∀ >   
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  ( ) ( *) 1
*

f x f x
x x

β−
≤ <

−
 

  ⇒ ( ) ( *) ( *) *f x f x x x x xβ− ≤ − < −  

   ⇒ ( ) ( *) * 0.f x x f x x− < − =

Thus any fixed point of f must be the maximum fixed point, implying that only one 

can exist.  

 

Finally, if, in addition to the above assumptions, we assume that f is differentiable 

almost everywhere, then Condition (2) is equivalent to the following: 

  
a)  is continuous over ,
b) ( )  where  is differentiable.

f
f x x fβ′ ≤ ∀ ∈

X
X

 (5) 

Similarly, Condition (3) is equivalent to the following: 

  
a)  is continuous over ,
b) ( )  where  is differentiable.

f
f x x fβ′ ≤ ∀ ∈

X
X

 (6) 

This gives a general uniqueness theorem that we shall use in this paper: 

Theorem 3: 

Let  be a closed, connected subset of , and let f be a single-valued continuous 

function from  onto itself that is differentiable almost everywhere. Then if, for some 

X R
X

(0,1)β ∈  

  a) ( )  where  is differentiablef x x fβ′ < ∀ ∈X , 

there exists a unique fixed point *x ∈X  such that ( *) *.f x x=  

If, in addition, we have  

  b) ( )  where  is differentiablef x x fβ′ > − ∀ ∈X , 

then the fixed point is stable in the sense that for any  and  x∈X 1,n ≥

( ) * * .n nf x x x xβ− ≤ −  

 Page 6 
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In the next section we show how the contraction mapping theorem in  space is 

used to establish uniqueness in the class of games considered in this paper, and show by 

example why we seek to reduce the problem to one involving  mappings.  

nR

1-to-R R1

3. The General Problem: 

A. Notation: 

Imagine that there are n players. We employ the following notation. The strategy 

space for each player i is  and the set of all possible combinations of strategies for all 

players is  Let  denote a strategy for player i and let  denote 

a strategy combination for all players. Rather than specify the payoffs for each player, we 

will express everything in terms of the best-response functions. Specifically, let  be 

the best-response of player i to the combination of strategies of the other players.

,iX

i.nX ix ∈X 1( ,... ) n
nx x= ∈Xx

if ( )x
2  

We impose the following restrictions on this general set-up: 

Assumption 1: 

a) For each i,  is a connected subset of the real line; iX�

b) for each i, if  is continuous, single-valued, and differentiable almost everywhere 

over  .nX

We do not require that the if  be fully differentiable so that the model will be able to 

handle non-differentiabilities that can arise from boundary solutions to an individual 

player’s optimisation problem. For ease of exposition, however, when presenting 

                                                 

2  It would be more conventional to define if over 1n−X rather than writing the best-response as 
where i−  is the vector of strategies of the players other than player i. We use the more 

general notation here so that the result derived in Section 4 is a more general fixed-point theorem, and 
not confined to the game-theoretic interpretation. The game-theoretic application is a special case in 
which 

,nX
( )i if −x , x

/ 0 .i if x i∂ ∂ ∀=  
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expressions involving derivatives we will omit the repeated caveat, 

“ ”, but this is implied.   where is differentiablen
if∀ ∈x  X

Proofs of existence of an equilibrium in this class of games typically proceed by 

defining the aggregate best-response function,  where : nf 6X Xn
1 2( , ,... ),nf f f=f  so 

that a Nash equilibrium in pure strategies is a fixed point of f and vice versa, and then 

appealing to the Brouwer fixed-point theorem. We want to find sufficient conditions for f 

to have a unique fixed point. For this, it would be sufficient to show that f is a contraction 

mapping. This, however, would be too restrictive, as illustrated by the following simple 

example.  

B. A Numerical Example:  

Consider a Cournot game in which the n players are firms choosing the quantity to 

produce taking the quantity produced by each of the other n-1 players as given. Assume 

that the market inverse demand curve is linear, and that each firm has a constant marginal 

cost of production. The linear structure satisfies the conditions required for uniqueness 

by Szidarovszky and Yakowitz (1977) amongst others.  

To see whether the aggregate best-response function constitutes a contraction 

mapping, we need to define a norm. Rather than choosing a particular norm, we will 

consider any p-norm of the form 

  ( )
1

1

n pp
ip

i

x
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑x  for some real number  1.p ≥

Now consider some initial vector of outputs, 1( ,... ),nx x=x  and a second vector,  

1( ,... ),ny y=y

.i i

 where all outputs have been perturbed by the same constant, δ, so that 

y x iδ= + ∀  The p-norm for this perturbation is  

  1/ .p
p

n δ− =y x  
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The linear Cournot game produces linear best-response functions in which, at interior 

solutions, / 0.5 ,i j .x x i∂ ∂ = − ∀ ≠j i  We therefore have ( ) ( ) 0.5( 1) ,i if f n δ− = − −y x  and 

hence 

  1/( ) ( ) 0.5( 1) .p
p

n n δ− = −f y f x  

For any n>2, therefore, we have  

  ( ) ( )
p p

− ≥ −f y f x y x   

and hence f is not a contraction mapping for any p-norm.  

What this example shows is that if we wish to use the contraction mapping theorem 

to show existence and uniqueness in a class of models that encompasses this standard 

example we will need to use a different function than f for which a fixed point defines an 

equilibrium. In the next section, we develop an approach that enables us to transform the 

problem so that an equilibrium is a fixed point in a mapping from a subset of the real line 

onto itself.  

4. An Alternative Approach: 

To transform the problem, we define an equilibrium iteratively, starting with one or 

two players and then progressively adding more in. The procedure we follow here will 

derive a general fixed-point theorem for a function,  where X is a 

connected subset of the real line. Because we are interested in the game-theoretic 

application, however, we will continue to refer to the elements from the vector, x, as 

strategies, and to fixed points as “equilibria”.   

: ,nf 6X Xn

Define an m-equilibrium as a set of ix such that  

  ( ) 1..i i i ,x f i−= ∀ =x m  

where  That is, it is a set of strategies such that the first m players’ strategies are 

the best response to the strategies of all other players, but the remaining n-m players’ 

strategies are unconstrained.  

.m n≤
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Let mx  be the vector of strategies by the first m players, and let m−x  be the 

strategies of the remaining n-m players when .m n<  An m-equilibrium when m  is 

therefore a Nash equilibrium in  taking 

n<
mx m−x  as given, and the m-equilibrium when 

 is a Nash equilibrium of the full game.  m n=

Let  denote an m-equilibrium value of ( )m m
ih −x ix  when m n<  and let  be 

an m-vector of those values. If there exists a unique m-equilibrium for each value of 

( )m m−h x

m−x , 

then the function  is single valued and defined for all mh m−x . 

Our approach to finding sufficient conditions for a unique equilibrium is to find the 

conditions for a unique 1-equilibrium that holds for all values of 1−x  and then to extend 

that by induction by finding conditions for there to exist a unique (m+1)-equilibrium that 

holds for all values of  conditional on there being a unique m-equilibrium.   ( 1)m− +x

We will define a set of mappings, g hat will relate a player’s strategy to 

itself. For m=1, we simply define,  

: ,m 6X X  t

1−  1
1 1 1 1( ; ) ( , ).g x f x− ≡x x  (7)  

There is an equivalence between a 1-equilibrium and a fixed point of  From Theorem 

2, a sufficient condition for there to exist a unique 1-equilibrium is that  be a quasi-

contraction mapping. When 

1.g

1g

1f  is a best-response function, 1 1/g x 0∂ ∂ =  and so this 

sufficient condition will always hold. In the more general case, we need   1 1/ 1g x < .∂ ∂

Now imagine that there exists a unique (m-1)-equilibrium for each value of ( 1)m− −x . 

In this case, define  as mg

   (8) 1( ; ) ( ( , ), , )m m m
m m m m mg x f x x− − −≡x h x x .m−

Again, there is an equivalence between an m-equilibrium and a fixed point of  and so 

a sufficient condition for there to exist a unique m-equilibrium given 

,mg

m−x  is that  be a 

quasi-contraction mapping.  

mg
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Definition 4: 

We say that f exhibits an “iterative quasi-contraction mapping” if m  exists and is 

a quasi-contraction mapping for each ,

 g

{2... }m n∈  and that it exhibits an “iterative 

contraction mapping” if  exists and is a contraction mapping for each  mg {2... }.m n∈

The main result of this paper is then  

Theorem 4: 

If f exhibits an iterative quasi-contraction mapping, then f  has a unique fixed point, 

and hence the game has a unique Nash equilibrium.  

Proof:  

As we have shown, if  is a quasi-contraction mapping, there exists a unique 1-

equilibrium for all values of 

1g

1.−x  If there exists a unique (m-1)-equilibrium for all values 

of  then  exists, and if  is a quasi-contraction mapping, there exists a unique 

m-equilibrium. By induction, then, if  is a quasi-contraction mapping for each 

 then there must exist a unique m-equilibrium for each m, and hence a unique 

equilibrium for the full game.  

( 1)m− −x

{1... }m∈

mg mg

mg

,n

 

Now imagine that each of the  is a full contraction mapping so that repeated 

applications of  will generate convergence to the unique fixed point. This does not 

imply that the full equilibrium would be stable in the way it would be if f were a 

contraction mapping.

mg

mg

3 It does, however, that imply a numerical solvability using the best-

response functions in the following sense. First, note that the 2-equilibrium can found 

                                                 

3  This can be seen from the Cournot example in Section 3, for which the equilibrium is not stable, but for 
which, as will be shown in Section 6, each of the mg  is a contraction mapping.  
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iteratively by alternately adjusting player 1’s strategy to that of player 2 and vice versa. 

Then, if the m-equilibrium is iteratively solvable by sequentially adjusting ea of the 

first m player’s strategies to be on his best-response functions, and if 1mg +  is a 

contraction mapping, then the (m )-equili um is iteratively solvable by adjusting the 

m-equilibrium to 1m

ch 

+1 bri

x +  and then 1mx +  to the mh  and so on. Iterative solveability is perhaps 

not the most useful property one m ght desire of an equilibrium, but it is essentially a free 

result.  

5. Su

ike to express the conditions in te s of 

the sl

be the atrix of f evaluated at x ents 

i

nxn 

fficient Conditions with Calculus. 

The analysis of the previous section gives sufficient conditions for uniqueness and 

iterative solvability that derive from our sequential approach. They are not, however, 

particularly user friendly. For that, we would l

Jacobean m

rm

, with elem

opes of the best-response functions.  

To do this let ( )J xn

( )ijJ x , so that  

  ( )( ) f∂ , , ,i
ij jxx    

jx∂

and let ( )n

J i= ∀

A x be the n trix, ( ) ( )n n nxn ma = −A x I J x ,  where nI  i xn ides the n ntity matrix, 

with the elements of ( )nA x  denoted, ( ).ija x  Finally, let ( )mJ x  and ( )mA x  be th  

submatrices comprising the first m rows and first m columns of ( )nJ x  and ( )n

e mxm

A x , 

respectively. The deriva

( )m

tives of the functions mg  can be expressed in term  

determ  the 

s of the

inants of A x  as fo

Theo  5

If  exists, then  

  

llows:  

rem : 

mg

1
1

1

( ) 1 ( )dg
dx

= −
x ,A x  and  (9) 
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1

( )( ) 1  for 
( )

mm

m m

dg m
dx −

= − ≥
A xx

A x
2. (10) 

Proof: 

Note that  

  1
1 11

1

( )( ) ( ) 1 ,ga
x

∂
= = −

∂
xA x x  

so Equation (9) holds trivially.  

For  we have from Equation 2,m ≥ (8) that  

  
11

1
.

mm
m m i

im i m

dg f h f
dx x x x

−−

=

∂ ∂ ∂
= ⋅ +

∂ ∂ ∂∑ m

m

 (11) 

Define ( )CmA x

(n

 as the column vector containing the first m-1 elements of the m’th 

column of ),A x  and define ( )RmA x

( ),n

similarly as the row vector containing the first m-1 

elements of the m’th row of A x  so that ( ),mA x  is the partitioned matrix 

  1( ) ( )
( )

( ) ( )
m Cm

m
Rm mma
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A x A x
A x

A x x
. 

We can then rewrite Equation (11) as  

  
1

( ) .
m

m
Rm

m m

dg f
dx x x

−
m

m

∂∂
= − +

∂ ∂
hA x  (12) 

The  variables are defined by the fixed point in the m-equilibrium 1m
ih −

   1 1
-( , )m m m

i i i mh f x i m− − −≡ ∀h , x 1.≤ −

Total differentiation yields  

  
11 1

1
.

mm m
ji i

jm j m

hh f i

m

f
x h x x

−− −

=

∂∂ ∂
= ⋅ +

∂ ∂ ∂ ∂∑ ∂  

In matrix notation this gives 
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1 1

( ) ( )
m m

m C
m mx x

− −∂ ∂
= −

∂ ∂
h hJ x A xm  

  ⇒
1

1
-1( ) ( )

m

m Cm
mx

−
−∂

= −
∂
h A x A x  

so Equation (12) becomes 

  1
-1( ) ( ) ( ) .m m

Rm m Cm
m m

dg f
dx x

− ∂
= +

∂
A x A x A x  

Finally, note that4  

  1
-1

1

( )
( ) ( ) ( ) ,

( )
m

Rm m Cm mm
m

a−

−

= −
A x

A x A x A x
A x

 (13) 

and that  

  1 ,m
mm

m

f a
x
∂

= −
∂

 

so that 

  
1

( )( ) 1 .
( )

mm

m m

dg
dx −

= −
A xx

A x
 

 

The conditions for an iterative quasi-contraction mapping can now be stated in 

terms of the determinants of the ( )mA x  matrices:  

Theorem 6: 

a) If there is an ordering of players, indexed by 1..n, such that for some (0,1)ε ∈  

                                                 

4  Equation (13) is a special case of the general result for partitioned matrices that  

  1−= −
A C

A D BA C
B D

 

 for square matrices A and D, where A is non-singular. For a proof of this result, see, for example, Rao 
(1965, p28).  
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  ( ) 0 {2.. }m mε≥ > ∀ ∈A x n  (14) 

then the best-response function exhibits an iterative quasi-contraction mapping.  

b) If, in addition, we have  

  
1

( )
2 2 {2..

( )
m

m

m nε
−

≤ − < ∀ ∈
A x

A x
}.

, 

heorem.  

 (15) 

then the best-response function exhibits an iterative quasi-contraction mapping.  

Proof:  

Follows automatically from Theorems 3 and 4.  

 

Condition (14) gives the general existence and uniqueness condition of this 

paper—that the function f has a unique fixed point if the leading principal minors of 

 are positive for all x, and bounded away from zero.  ( ) ( ))n n−(I x J x

6. Relationship to Other Existence and Uniqueness Conditions.  

In this paper, we have found a condition under which there exists a unique fixed 

point for the single-valued function , where X  is a closed, connected 

subset of the real line and f is continuous. Note that if X  is bounded, the existence of a 

fixed point is guaranteed by the Brouwer fixed-point theorem and so Theorem 6 is a 

primarily a uniqueness t

: n nf 6X X

Typically, existence theorems for pure-strategy Nash equilibria that deal with more 

general games, do require bounded strategy spaces. This includes games where the best-

response functions are not necessarily single valued that make use of the Kakutani fixed-

point theorem, and the existence theorem for supermodular games in which the best-

response functions are not necessarily continuous, which makes use of the Tarski fixed-

point theorem. (See Fudenberg and Tirole (1991) for a description of supermodular 

games.)  
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The contraction mapping theorem is probably the most important general existence 

theorem for games with unbounded strategy spaces. Theorem 6 uses a weaker 

requirement than a full contraction mapping to establish both existence and uniqueness, 

and provides a simple Jacobean representation of that condition. Interestingly, this matrix 

representation of the condition, is very similar to a number of existing uniqueness proofs 

that require a prior demonstration of existence. The major contribution of Theorem 6, 

therefore, is to extend those results to the case of unbounded strategy spaces.  

In the remainder of this section, we survey those existing uniqueness conditions.  

A. Univalent Mapping Theorems: 

Two of the best known papers providing a generic set of sufficient conditions for 

uniqueness in games of the form analysed here are Gale and Nikaido (1965) and Rosen 

(1965). 

Although the derivation is very different, Gale and Nikaido’s sufficient condition is 

very similar to Theorem 6. Their condition, which applies when the strategy-space,  X  is 

bounded, is that  be a P-matrix—that is, that all principal minors be positive. 

For bounded strategy spaces, Theorem 6 is slightly more general, in that it only requires 

that the leading principal minors be positive.

( ))n n−(I J x

5 More importantly, Theorem 6 extends the 

Gale-Nikaido condition to the case of unbounded strategy spaces by proving existence in 

those cases.  

Rosen considers a very general game structure in which the strategy space for any 

player can be conditional on the strategy chosen by another (as could happen in a 

coalition game). In the special case, however, where the player’s strategy spaces are 

orthogonal to each other, i.e. the class of games considered in this paper, Rosen’s 

sufficient condition can be written as follows:  
                                                 

5  The Gale-Nikaido theorem only requires that the principal minors be positive rather than bounded away 
from zero. Since the theorem only applies to equilibria contained within a closed rectangular region, 
however, the requirement that all principal minors be positive is the equivalent to requiring that they be 
bounded above zero.  
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If there exists a diagonal matrix R, with diagonal terms  such that the 

symmetric matrix ( )

0 iir > ∀i

( )′+RA RA  is positive definite, then there is a unique equilibrium.  

The main result of this paper generalises this result in two ways: First, Rosen 

establishes existence by means of the Kakutani fixed-point theorem, and thus again 

requires each player’s strategy space be bounded; second, Rosen’s sufficient condition is 

strictly encompassed by the conditions of Theorem 6 here, as shown by the following 

result.  

Theorem 7: 

For any symmetric nxn matrix, A, if there exists a diagonal matrix R, with diagonal 

terms  such that the symmetric matrix ( )0 iir > ∀i ( )′+RA RA  is positive definite, then 

the leading principal minors of A will be positive, but the reverse is not necessarily true.  

Proof: 

( ) ( )′+RA RA  is positive definite if and only if RA  is positive definite, which 

implies that the principal minors of are all positive, and hence that the principal 

minors of A are positive. The fact that a non-symmetric matrix with positive principal 

minors is not necessarily positive definite, however, allows one to construct 

counterexamples in which the conditions for Theorem 6 are met, but not for Rosen’s 

theorem. For one such counterexample, consider the following matrix.  

RA

   
1 0 8
2 1 0 .
0 .5 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

A has positive principal minors. Without loss of generality, we can set  so that  1 1,r =

   
2

2 2 3

3 3

2 2 8
( ) ( ) 2 2 .5

8 .5 2

r
r r r

r r

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

RA + RA .
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For the second principal minor to be positive, we need 2 1.r <  It is easy to show that the 

determinant of the full matrix is concave in given  and hence that the determinant-

maximising value of given  is  

3r 2r ,

3r 2r

   3 28(3 ) .r r= − 2r

Substituting in this value of  it is trivial to show that the determinant of the full matrix 

is negative for all values of  

3,r

2r ∈ (0,1).

 

B. Index Theory. 

Simsek, Ozdaglar, and Acemoglu (2007) present an extension of the Poincaré-Hopf 

index Theorem, which includes a uniqueness condition for continuous games as one of 

its applications. Their condition, which is also an extension of the Gale and Nikaido 

(1965) result discussed above, is implied by ( ))n n−(I J x being a P matrix, but is slightly 

more general. Also, their condition only needs to apply locally at the equilibrium and not 

globally. As with the Gale and Nikaido and Rosen results, however, the Simsek, 

Ozdaglar, and Acemoglu result demonstrates uniqueness within a bounded region and so, 

again, Theorem 6 provides an extension of the result into the case of unbounded strategy 

spaces.  

C. Cournot Games.  

There are many papers giving conditions for uniqueness in a Cournot quantity-

setting game. These include Szidarovszky and Yakowitz (1977), Kolstad and Matheisen 

(1987), Gaudet and Salant (1991), and Long and Soubeyran (2000). All three of these 

papers provide conditions which imply that the best-response functions of players are 

negatively sloped, along with other conditions required to bound the set of prices over 

which demand is positive. As shown by the following, theorem, by using the general 
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uniqueness theorem in this paper one only needs to require non-positively-sloped best-

response functions; the bounding conditions are not necessary.  

Theorem 8:  

Let nA  be a square matrix with 1 iia i= ∀  and  

  ( 1, 0] , .ij ia j i iα= ∈ − ∀ ≠ ∀   

Then 0.n >A    

Proof: 

Given in the Appendix.  

 

D. Row-Sum Conditions:  

Cachon and Netessine (2004) show that a sufficient condition for the function,  f, to 

exhibit a contraction mapping is that, for all x,   

  
( )( ) 1 or 1  .ji

j ij i

ff i j
x x

β β
∂∂

< ≤ ∀ < ≤ ∀
∂ ∂∑ ∑

xx  

That is, f exhibits a contraction mapping if the sum of the absolute values of the off-

diagonal elements in the Jacobean matrix is bounded below one in each row or in each 

column. This result is established by showing that a function has a contraction mapping 

if the largest eigenvalue of the Jacobean matrix,  is less than one, and that, using a 

result of Horn and Johnson (1996), this will hold if the maximum row sum or the 

maximum column sum is less than one. Although this approach is very different from 

ours, it is easy to show that this condition meets our requirement for there to be an 

iterative quasi-contraction mapping. Indeed, we can generalise the result a bit:  

( )J x

Theorem 9: 

 Let nA  be a square matrix with  If 0 .iia i≥ ∀ nA  has a dominant diagonal in the 
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sense that there exist positive numbers,  such that either  1 2, , nd d d… ,

  ,j ij i ii
j i

d a d a
≠

<∑  or 

  ,i ij j jj
i j

d a d a
≠

<∑  

then 0 .m m n> ∀ ≤A  

Proof: 

Given in the Appendix.  

 

In the case where the function the function, f, describes reaction functions so that 

( ) / 0,  , ,i if x∂ ∂ = ∀ ∀x ix  it is easy to show that the conditions for the Cachon and 

Netessine result imply that nA is dominant diagonal with 1 .id i= ∀  Theorem 9 then 

generalises the contraction-mapping derived existence and uniqueness conditions in two 

ways. First, the theorem allows the rows or columns to be scaled by non-unitary  

Second, in the general case where it is not necessarily the case that it is 

easy to generate examples with  

.id

( ) / 0,i if x∂ ∂ =x

( ) / 0,i if x∂ ∂ <x under which, even with  1i  ,d i= ∀

( )nA x

( )J x

is dominant diagonal but the maximum row sum and maximum column sum of 

exceeds one.  

7. Conclusion.  

This paper has presented a simple existence and uniqueness condition for 

continuous games which is both quite general and easy to apply. The condition 

encompasses and generalises a number of existing uniqueness conditions that were 

derived using a wide variety of approaches. The condition in this paper, then, provides a 

unifying framework for presenting those conditions. Most importantly, however, it 

extends those existing results to the case of games with unbounded strategy spaces.  
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As shown by the relative simplicity of the proofs of Theorems 8 and 9, the general 

condition—that the leading principal minors of the matrix ( )n n−I J x  all be positive—

lends itself to reasonably simple induction proofs for demonstrating that the condition 

holds in particular models. The result therefore has the potential to serve as a source for 

further existence and uniqueness conditions in specific games.  
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Appendix 

A.  Proof of Theorem 8. 

For ease of exposition, it will be convenient to prove a trivially generalised 

statement of Theorem 8 in which the diagonal elements of nA  can take any positive 

values and there can be a single row in which the common-off-diagonal elements take the 

same value as the diagonal element:  

Theorem 8a: 

Let  be the set of nxn matrices, nΩ ,nA satisfying the following properties: 

 a)  0  iia i=> ∀

 b)  [0, ]   , .ij i iia b a i i j= ∈ ∀ ≠

 c) I  f  for some , then  .i ii i iib a i b a j i= < ∀ ≠

Then 

  0 ,n n n n> ∀ ∈Ω ∀A A .  

Proof: 

The proof is by induction. The proposition is clearly true for n=1 and n=2. Now 

assume that there is some 2n >  such that the proposition holds for all .n n<  we will 

show that it then holds for .n n=   

Let  i
n
−A  be the submatrix obtained by removing the i’th row and column from .nA  

First note that if  for any i, then 0ib = i
n n

−=A A , and, since  the 

result holds by the induction assumption. We shall therefore only consider the case where 

 

1,
i

n n n n
−

−∈Ω ⇒ ∈ΩA A

0 .ib i> ∀
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The proof follows by considering the matrix derived from nA by replacing the 

diagonal terms in one row with the off-diagonal term for that row. We show that this 

change unambiguously reduces the determinant of the matrix, but results in a matrix with 

a non-negative determinant.  

Formally, define the matrix  which is derived from some nxn matrix, 

 by replacing with  The determinant of this matrix is  

( , ),m n mbB A

.,n ∈ΩA n mma mb

  ( , ) ( ) m
m n m n mm m nb a b −= − −B A A A  

  ⇒ ( , ) ( ) m
n m n m mm m nb a b −= + −A B A A .  (16) 

Define nΩ ⊂Ωn  as the subset of matrices in nΩ  in which there is one row i where 

 Now consider some matrix .i ib a= i n n∈ΩA , and the adjusted matrix, where 

 is a matrix that has two rows in which all elements in the row are 

the same, and hence 

( , )m n mbB A

.mm mb a≠ ( , )m n mbB A

( , ) 0.m n mb =B A  Furthermore, ( mm ma b ) 0− >  and, since 

 by the induction assumption,  1
m

n
−

−∈ΩA A ,nn n∈Ω ⇒ 0.m >n
−A  From Equation (16), 

then, we have 0 .n n n∈Ω> ∀A A  

 Now consider a matrix, \n n n∈Ω ΩA —that is a matrix for which —and 

the derived matrix for some m. Again, we know that  and, by 

the induction assumption,  

i iib a< ∀

) 0ma b− >

i

( , )m n mbB A ( mm

0.m
n
− >A  Furthermore,  ( , )m n m nb ∈ΩB A  and so, by the result 

shown in the previous paragraph, ( , ) 0.m n mb >B A  From Equation (16), then, we have 

0 \n n n> ∀ ∈Ω ΩA A ,n  which establishes the result.  
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B. Proof of Theorem 9. 

Theorem 4.C.1 in Takayama (1985), shows that a dominant diagonal matrix with 

no constraint on the sign of the diagonal elements must be non-singular. It is then 

straightforward to show that if the diagonal elements are all positive, the determinant 

must be positive. The proof is by induction.  

Trivially, the 1x1 matrix whose single element is positive has a positive 

determinant. Now assume that the theorem holds for all matrices of size m-1, and let mA  

be a dominant diagonal matrix. This implies that  

  1 0.m m
mma −
∂

= >
∂

A A  (17) 

Now let  

  
1

ˆ ,m
mm mm

m

a a
−

= −
A

A
 (18) 

and let ˆ
mA  be the matrix created by replacing  with  Equations mma ˆ .mma (17) and (18) 

then imply that  

  ˆ 0,m =A  

which from Takayama’s result implies that ˆ
mA  cannot be dominant diagonal and hence 

that  

   (19) ˆ .mm mma a<

Since 1 0,m− >A (18) and (19) together imply that 0.m >A  
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